Describe the process of mitosis, drawing a diagram (8)

- Cell cycle: interphase G1, S, G2, M phase
- Interphase processes:
 - o DNA replication
 - Organelle duplication
 - Cell growth
 - o Transcription/translation
 - o Obtaining nutrients
 - Cellular respiration
- Roles of mitosis:
 - Tissue repair
 - Growth
 - o Asexual reproduction
 - Development of embryo
- Prophase supercoiling and condensing, nuclear membrane dissolves, centrosomes move to poles and spindles form
- Metaphase spindles attach to centromeres, contract, middle, in
- Anaphase contraction, sister chromatids separate poles, separate chromosomes
- Telophase decondense, membrane reforms (Tokhhesis begins
- Cytokinesis division of cells in a two senetically identical cells

Explain how water is the medium of life, comparing methane (8)

- Ly lregen bonding pour Contions
- Cohesive and adhesive high surface tension capillary action
- Solvent properties:
 - Ionic/polar (hydrophilic) substances dissolve
 - Important medium for metabolism and transport
- Thermal properties:
 - Can absorb large amounts of heat energy before changing state hydrogen bonds
 - Very high specific heat capacity
 - Very effective coolant (evaporation of sweat requires heat from body)
- Other properties:
 - Transparent for photosynthesis and vision
 - Expands when frozen less dense floats on water
- Vs methane:
 - o Polar vs non-polar
 - Higher heat capacity
 - Higher boiling point

Compare fibrous and globular proteins

- Fibrous: long and narrow, structural function, repetitive amino acid sequence, less sensitive to changes in pH, temperature, e.g.s collagen, myosin, fibrin, insoluble in water
- Globular: round, functional, irregular AA sequence, sensitive, e.g.s enzymes, haemoglobin, insulin, soluble in water

Discuss two models of enzyme activity

- Lock and Key
 - Enzyme and substrate complement one another's shapes and chemical properties exactly
 - o Active site and substrate share specificity
- Induced fit
 - o Active site not a rigid fit for substrate
 - Changes conformation to accommodate
 - Stresses substrate bonds and induces catalysis

Explain lactose intolerance and how milk is made lactose free

- Lactase digests lactose into glucose/galactose tested to an inert surface of These are
- These are immobilised e iz pres fixed to a cartic sarface to prevent enzyme loss
- Improves the table of product are purity of yield
- Dilk spassed over the large become lactose free
- Benefits:
 - o Provides dairy to lactose-intolerant people
 - Increases sweetness of milk naturally
 - Reduces crystallisation and production times for cheese

Compare RNA and DNA

- Both polymers of nucleotides
- In DNA sugar is deoxyribose
- In RNA it is just ribose
- DNA = thymine
- RNA = uracil
- DNA = double stranded
- RNA = single stranded

Describe the process of translation

- Ribosomes are site of translation ribosomal RNA and protein
- Small unit mRNA binding site
- Large unit 3 tRNA binding sites (EPA)
- Multiple ribosomes (polysome) can translate single mRNA sequence simultaneously

- INITIATION:

- o Messenger RNA transported to ribosome, binds to small unit
- o Moves in 5'-3' direction to start codon
- o Ribosome reads an mRNA sequence in base triplets called codons
- Each codon codes for specific amino acid
- Amino acids are transported to ribosomes by transfer RNA
- Each tRNA aligns opposite a codon via a complementary anticodon binds to the start codon
- Large subunit aligns to the tRNA molecule at P site and forms complex with small sub-unit

- Elongation:

- o A tRNA molecule pairs with next codon on A site
- o Ribosome covalently attaches amino acid in P site and acid in A site via peptide bond
- Ribosome moves along one code from sation and deacylated tRNA molecule released from Esize
- Elongation and translocation continue

· Tern Cation.

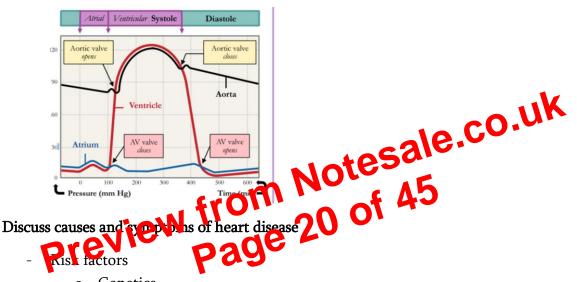
- When ribosome reaches STOP codon, polypeptide release and ribosome disassembled into subunits
- o tRNA: amino acids are attached by tRNA activating enzymes
- Joins ATP to an AA and the charged AA is linked to tRNA
- o Creates high energy bond which ribosomes use to synthesise peptide bonds
- Each tRNA enzyme is specific to particular AA but may bind multiple tRNA
- o In eukaryotes, free ribosomes synthesise intracellular proteins
- o Bound ribosomes synthesise extracellular proteins

- Amphibians
 - Have a moist skin (permeable to gases)
 - o Reproduce via external fertilisation
 - Breathe through skin and are ectothermic
- Mammals
 - Covered in skin (and keratin hair follicles)
 - Have internal fertilisation (and lactation)
 - Breathe via lungs and are endothermic

Outline structural and molecular evidence that help produce clades

- Structural
 - Not always reliable
 - o Related species may have distinctive, homologous features
 - o Unrelated species may have similar, analogous features
- Molecular
 - o Comparison of DNA or AA sequence
 - o Related species will have sequences with more similarities
 - AA sequences will accumulate differences at a slower rate to DNA sequences
 - o If a sequence accumulates mutations at constant are time of divergence can be calculated based on number of it drations between 2 species

Outline adaptations of the villi which help efficient absorption


- Finger-like tracolar projections
- Licresse surface area (E. prosessim
- Microvilli
- Rich blood supply
- Single layer epithelium
- Lacteal
- Intestinal crypts
- Membrane proteins

Outline mechanical and chemical digestion

- Mechanical: Breakdown of food via physical actions
 - Chewing
 - Churning (squeezing of stomach)
 - Segmentation (intestinal contractions)
- Chemical: Breakdown via chemical agents
 - Stomach acids (low pH)
 - o Bile
 - o Enzymes

Outline the cardiac cycle

- Systole
 - As atria contract, atrial pressure exceeds ventricular pressure
 - AV valves open and blood flows into ventricles
 - As ventricles contract, Vp>Ap
 - AV valves close first heart sound
 - Pressure builds until Vp>Arterial p
 - Semilunar valves open and blood flows into arteries
- Diastole
 - As blood flows into arteries, Vp drops 0
 - Backflow closes SL valves second heart sound
 - When Vp<Ap the AV valves open and cycle repeats

- Genetics 0
- Obesity
- Diseases
- Diet 0
- Exercise \circ
- **Smoking**
- Sex (gender)
- Coronary thrombosis caused by clots within coronary arteries
 - Vessels damaged by cholesterol deposition (atherosclerosis)
 - Deposits reduce vessel diameter and increase blood pressure
 - Stress damages arterial walls and is repaired with fibrous tissue
 - Vessel wall loses elasticity and forms atherosclerotic plaques
 - If a plaque ruptures, blood clotting is triggered, forming a thrombus
 - If thrombus blocks blood flow, a myocardial infarction ensues
- This is coronary heart disease

Outline the process of clotting

- Prevents pathogenic entry
 - Injured cells and platelets release clotting factors
 - Factors convert prothrombin into thrombin
 - Thrombin in turn converts fibrinogen to fibrin
 - Fibrin forms mesh blocks injured site
 - Clotting factors also cause platelets to become sticky and form solid plug (clot)
- Coagulation cascade
- If this occurs in coronary arteries → myocardial infarction

Discuss the formation of antibodies

- Macrophages/phagocytes engulf and digest pathogens
 - o Contain pseudopodia which surround pathogen and internalise pathogen in vesicle
 - o Vesicle may fuse with lysosome to digest pathogen
 - o Present pathogen's antigens on self
 - o Become antigen presenting cell (APC)
- Present these antigens to T-helper cells
- T-helper cells activate antigen-specific Poets alonal selection)
 s divide and differentiate into preda ells
 These produce have
- B cells divide and differentiate into
 - These produce large unitaies of specific antibodies specific to antigen
 - differentiate into penor, cells

and active im

- Passive
 - Breastfeeding
 - Across placenta
 - Monoclonal antibodies
- Active
 - Normal response to infection
 - Immunity via vaccination

Outline cause and effects of HIV

- Retrovirus
- Infects helper T cells
- Usually transmitted via exchange of bodily fluids
- Integrated into genome of infected T helper cells
- Inactive for long time, then lyses T helper cell as it spreads
- Inability to produce antibodies loss of immunity

Discuss the process of lactation

- Production and secretion of milk by maternal mammary glands
- Controlled by oxytocin and prolactin
 - Prolactin secreted by anterior pituitary in response to PRH from hypothalamus
 - Develops mammary glands and production of milk
 - Effects inhibited by progesterone which prevents milk production from occurring prior to birth
- Oxytocin is responsible for the release of milk from the mammary glands
 - Produced in the hypothalamus and secreted by neurosecretory cells that extend into posterior pituitary
 - Triggered by stimulation of sensory receptors in breast by suckling infant
 - Positive feedback loop results in continuous oxytocin secretion until feeding ends

Outline iodine role

- Thyroxin contains iodine in chemical structure
 - e.co.uk Cannot be produced if iodine is deficient in the diet
 - Iodine deficiency therefore affects thyroid gland
 - Affects thyroxin production
- Iodine deficiency will develop enlar

Discuss high altitude training

- ides air pressure is lower lower partial pressure of O2
- Makes it more difficult for fiaem to take up and transport O2
- Respiring tissue receives less o2 headaches, fatigue, rapid pulse
- Adaptations
 - More erythrocytes / higher haem count with higher affinity / higher vital capacity / more myoglobin and more vascularisation / kidneys produce alkaline urine / greater lung SA and larger chest size

Discuss emphysema and treatments

- Walls of alveoli lose elasticity abnormal enlargement of alveoli lower total surface area for gas exchange
- Holes bullae
- Cause smoking chemical irritants damage walls phagocytes elastase breaks down elastic fibres (can be genetic)
- Treatments:
 - Bronchodilators / corticosteroids / elastase enzyme inhibitor / o2 supplementation / surgery / lung transplant