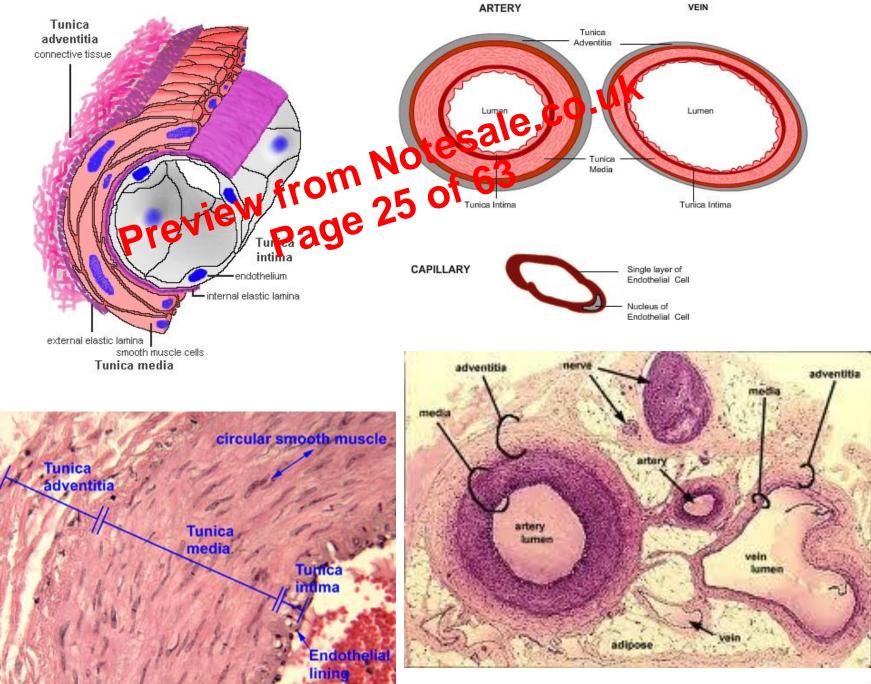


- 2. Amphibian Notesale.co.uk 3-chamberet of 63 3-chamberet of 63 atria & 1 ventricle (2 cipates of boos flow: pulmonary & systemic) Pulmonary circuit leads to the lung and skin, blood picks up O_2 as it flow through capillaries; O_2 -rich blood returns to left atrium of heart, and it is pumped to systematic circuit
- Systemic circuit carries blood to all organ except lungs; returns the blood to right atrium via veins

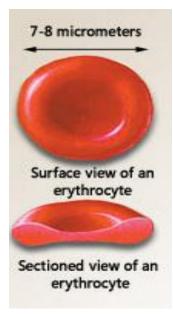

Double circulation ensures vigorous flow of blood to the brain, muscles and other organs as the blood is pumped 2nd ptage after it losses pressure in the capillary beds of the lung

- Mixing of O₂-rich with O₂-poor blood in single ventricle
- 3. Reptiles
- 3-chambered, single ventricle partially divided by septum
- Reducing mixing of O₂-rich with O₂-poor blood

- 4-chambered, 2 attietes 2 complex
 Double 100 Dird completely separated 4-chambered, 2 attor 2 completely ventricles
 Dopple Circulation, heart keeps O₂-rich
- blood fully separated with O₂-poor blood
- Solution Left side of heart handles only O_2 -rich blood; right $\rightarrow O_2$ poor blood
- Delivery of O₂ to all parts of body enhanced as
- a) No mixing of O_2 -rich with O_2 -poor blood
- b) Double circulation restores pressure after blood has passed through lung capillaries

The Circulatory System - AS Biology Revision - OCR (Unit 1.2.2).flv

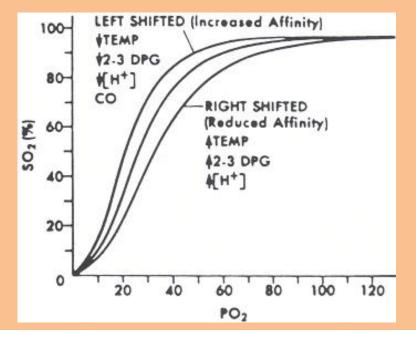
- Arteries carry blood away from the heart to organs throughout the body otes
- Arteries branch into a ferioles, small vessels that convey blood to capillaries
- Capillaries microscopic vessels with very thin, porous walls
- Network of these vessels (capillary beds) infiltrate each tissue
- Chemicals are exchanged between the blood and interstitial fluid surrounding the cells through thin walls of capillaries



- Diffusion takes place between cells and tissue fluid; providing every cell with 3 substances carried by bloodeview page 3
- Solution State Waste materials (CO₂ and urea) diffuse from cells → tissue fluid → blood ('go-between')
- Blood at venule end of capillary bed: deoxygenated and waste products high
- Hydrostatic pressure >>low at venule end:
 - -loss of fluid at arteriole end
 - -narrow vessels \rightarrow increased friction
 - -increased distance from heart

Capillaries Biology Anatomy.flv

STRUCTURE & FUNCTIONS OF ERYTHROCYTE


- Contains benefolipin (peopiratory pigment-250 million molecules cell); collects O₂ easily at lungs & releases at respiring tissues
- 2. No nucleus (> space for > hemoglobin $\& > O_2$ can be carried)
- 3. Contains enzyme carbonic anhydrase (needed for transport of CO₂)
- 4. Round, disc-like shape (allows cell to be squeezed through narrow capillaries)

- Flexible cell surface periodicate (helps cell to be squeezed through narrov papillaries; resist bursting due to changes of veloce)
- Biconcave (increases surface area:volume; provides larger surface for diffusion of gases, speed up diffusion; resist bursting)
- 7. Thin cell surface membrane (short diffusion distance)
- Act as container (enclosing hemoglobin, prevents it from filtered out and lost from body in kidney; keeps carbonic anhydrase close to hemoglobin, reacts >efficiently)

FACTORS INFLUENCING O, SATURATION IN CONSTRUCTION OF 63 Temperature 10 63 of 63 Concentration of 63 frydrogen ions in blood

- Presence of diphosphoglycerate/ diphosphoglyceric acid (product of glycolysis)
- Partial pressure of CO₂

