
4. Pseudostratified columnar epithelium- secrete substances, particularly mucus; propulsion of mucus by ciliary action. *Location:* trachea and most of the upper respiratory tract.

5. Stratified squamous epithelium- protects underlying tissues in areas subjected to abrasion. *Location:* esophagus, mouth and vagina.

Exocrine vs Endocrine Glands

Endocrine- Ductless glands. They produce hormones, messenger chemicals that they secrete by exocytosis directly into the extracellular space.

Exocrine- secrete their products onto body surfaces (skin) or into body cavities. The unicellular glands do so directly (exocytosis), whereas the multicellular glands do so via an epithelium-walled duct that transports the secretion to the epithelial surface.

Multicellular exocrine glands

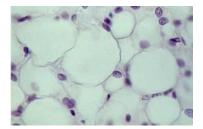
Structural classification

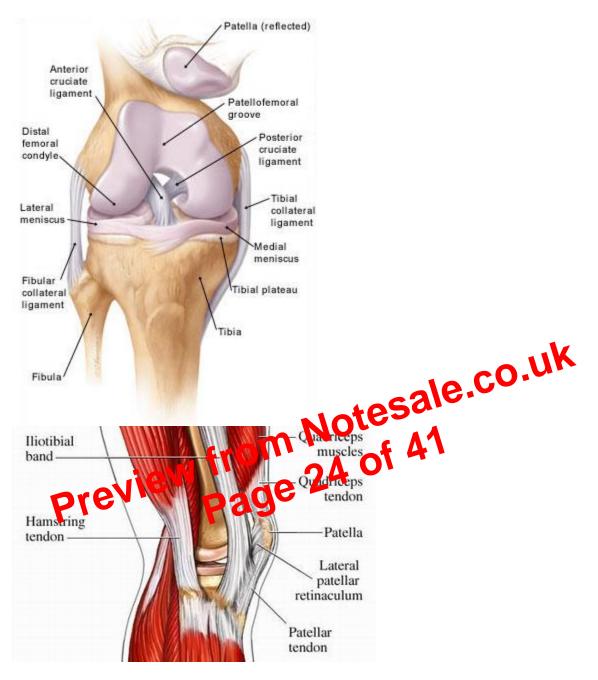
- ✓ **Simple glands** have unbranched duct.
- ✓ **Compound glands** have a branched duct.
- ✓ **Tubular** if the secretory cells form tubes.
- ✓ Alveolar- if the secretory cells form small, flasklike sacs.
- ✓ **Tubuloalveolar** if they have both types of secretory units.

Mode of Secretion

- Merocrine- secrete their products by exocytosis as they are produced
- Holocrine- accumulate their products within them until they rupture.

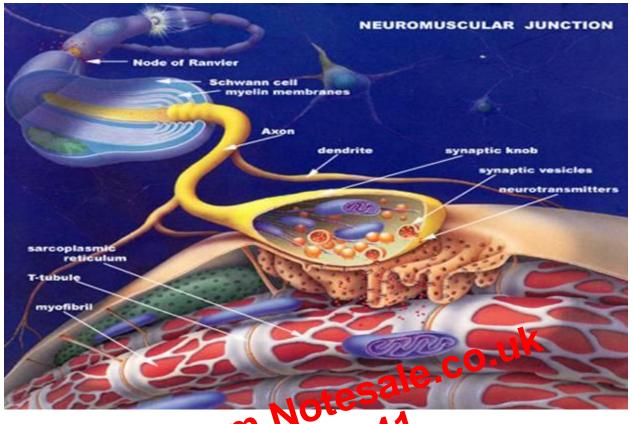
Connective Tissue


surrounds capillaries

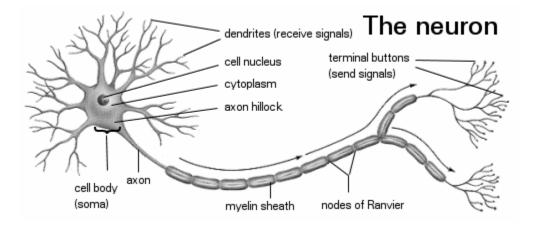

Most abundant and widely distributed of the primary tissues.

Types

Areolar- Gel-like matrix with all three fiber types; cells: fibroblatte naterphages, mast cells, and some white blood cells. Function: wraps and custiles eigens; its macrophages phagocytize bacteria; plays important role in inflammation, holds and conveys issue fluid. *Location:*


Adipose- Matrix as in areolar, but very sparse; fat cells that have their nucleus pushed to the side. Function: provides reserve food fuel; insulates against heat loss; supports and protects organs. *Location:* around kidneys and eyeballs and breasts.

Joint movements


Extension- reverse of flexion like straightening a flexed knee Abduction- moving away from the body like raising your arms like an airplane Adduction- moving toward the body opposite of abduction like lowering your arms Circumduction- moving your arm like a pitcher to throw a ball Rotation- turning a bone along its own axis like turning your head

Rigor mortis- When the body is trouch in one position because we can no longer generate action potential to much the actin and myosin.

Chapter 11

- Glial Cells (neuroglia)
 - Central Nervous System
 - Astrocytes
 - Bridge between capillaries and neurons
 - Microglia
 - Transforms into macrophages
 - Ependymal
 - Helps circulate cerebral spinal fluid
 - Oligodendrocytes
 - Form myelin sheath in the CNS
 - o Peripheral Nervous System
 - Satellite cells
 - Surround neuron cell bodies
 - Schwann cells
 - From myelin sheath in the PNS

- Ion Concentration
 - 0 Negative inside
 - K⁺ and Cl⁻ binding
 - Cl-
 - Negative proteins
 - Leaky potassium gates
 - Positive outside 0

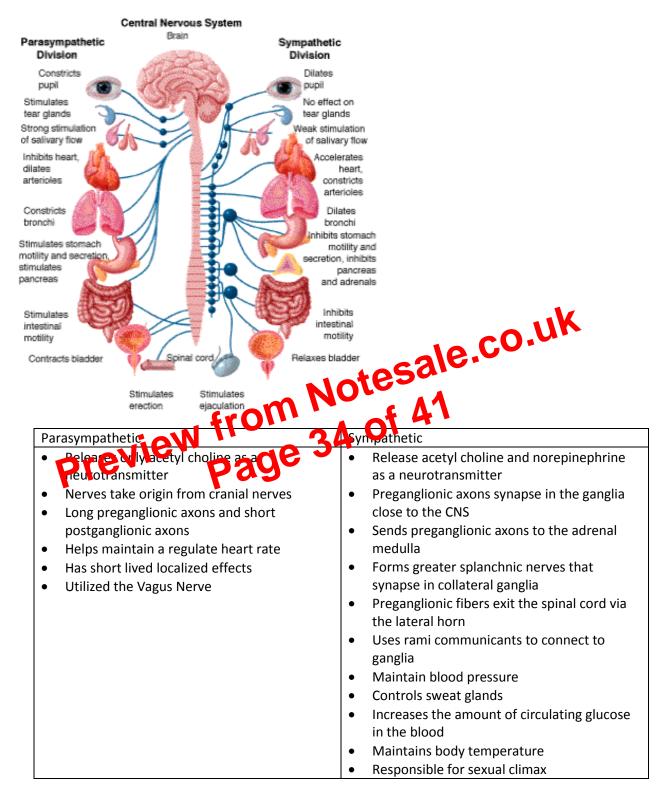
Sodium 🙎

- K⁺
- Leaky sodiun set s

aued potent

m Notesale.co.uk 28 of 41 Influx of this on during an EPSP is greater than the outflow of other ions

Chloride 0


0

- An increase in membrane permeability to this ion leads to an IPSP
- Present of this ion contributes to internal negative charge of neuron at rest
- Sodium-potassium Pump 0
 - Helps to restore ionic imbalance due to hyperpolarization
- Potassium 0
 - The gradual closing of this gate leads to hyperpolarization
 - Movement of this ion through leaky channels aids the neuron in staying negative internally at rest
 - Ion responsible for repolarization wave •
 - These ions move away from the membrane and neutralize other ions inside the cell with a graded potential

Chapter 12

- Meninges
 - 0 Dura mater
 - Hard external covering

Chapter 14

