
- IMPORTANT because this means more ends can be acted on at the same time by enzymes
- Aglucose can be released more rapidly

 V helpful in animals as animals move and use energy for muscle contraction, much higher rate of metabolism than plants

BONJOUR it's cellulose

- Straight, unbranched chains
- Because alternate molecules have to flip, hydrogen bonds can form between parallel, adjacent chains- cross linkage
 - Individually weak but collectively a considerable contribution to strengthening

- Cellulose molecules are grouped together to form microfibrils
 - These are arranged in parallel groups called **fibres**
- Cellulose is major component of plant cell walls and provide rigidity to the plant cell
 - O Stops cell bursting from osmotic pressure by exerting an invert pressure that stops any further influx of water
 - Living plant cells are turgid, push as its each other and make non woody parts of the plant seming a
 - Imp Can to keep stem and leades turgid for max SA for
 - Caralda Andrewith and an
 - Couldn't do without cell wall stopping the cells from bursting
- here's why the structure is v. cool
 - Cellulose is made of straight, unbranched chains
 - **o** Bonds between monomers are difficult to break
 - These run parallel to each other, and are cross linked by hydrogen bonds
 - The chains form microfibrils and then fibres- both of these things add strength

Lipids

Made up of carbon, hydrogen and oxygen

Fatty acids needed for phospholipids needed for CSM and plasma membranes can also be respired for energy, needed for any metabolic process