d) All of above

<u>19.</u>	If $W = \{(a, b, c) a + b + c = 0; a,$	$b, c \in \mathbb{R}$ } is a subspace of $V = \mathbb{R}^3$, then what is $\dim W = ?$
a) 3	b) 2	c) 4	d) Infinite

<u>20.</u> Consider a system AX = 0 of linear equations, where $A = M_{2 \times 2}(K)$, then which one is true?

a) $X \in K^2$, where K is any field

- b) Zero vector does not belong to its solution set
- c) The Solution set W of given system is subspace of \mathbb{R}^n

d) Given system is non-homogeneous system

<u>21.</u> Two matrices *A* and *B* have the same row space if:

a) Both are row equivalent matrices

b) Both are row canonical matrices having different nonzero rows

c) Both have same column entries

d) Both (*a*) and (*b*)

22. What will be the rank of matrix
$$A = \begin{bmatrix} 1 & -2 & 0 & 4 \\ 3 & 1 & 1 & 0 \\ -1 & -5 & -1 & 8 \\ 3 & 8 & 2 & -12 \end{bmatrix}$$
?
a) 3 **b)** 2 **c)** 1 **d)** 4

<u>23.</u> If $U = \{(x, x) : x \in \mathbb{R}\}$ and $V = \{(x, -x) : x \in \mathbb{R}\}$, then which one is true? **a**) $U \bigoplus V = \mathbb{R}^2$ **b**) $U + V = \mathbb{R}$ **c**) $U \bigoplus V = \mathbb{R}$ **d**) $U + V = \mathbb{R}^2$

<u>24.</u>If $U = \{(a, 2a): a \in \mathbb{R}\}$ and $V = \{(b, 3b): b \in \mathbb{R}\}$, then dim $(U \oplus V) = ?$ **a**) 1**b**) 3**c**) 2**d**) 4

<u>25.</u> Any Linearly independent set of vectors in vector space *V* can be made basis of *V* by:

- a) Discarding some vectors
- **b**) Adding more vectors

c) Adding zero vectord) Leaving it same

b) $S_3 = \{(-1,0,1), (0,0,1), (1,1,0)\}$ **d**) $S_4 = \{(0,0,0), (1,1,0), (1,0,1)\}$

28.Which vector/set induces a one-to-one correspondence between V and K^n to show isomorphism?**a) Basis Setb)** Coordinate Vector**c)** Spanning Set**d)** Both (a) and (b)

<u>29.</u>What will be the dimension of subspace spanned by coordinate vectors:[A] = [1,2,6,0,0,0], [B] = [2,3,4,1,-1,-3], [C] = [2,0,7,3,4,-2]**a**) 1**b**) 2**c**) 3**d**) 4

<u>30.</u> Let A be any $m \times n$ matrix over K. Then which mapping is determined by A?**a)** $F_A: K^n \times K^m$ **b)** $F_A: K^n \times \mathbb{R}$ **c)** $F_A: \mathbb{R} \times K^m$ **d)** $F_A: K^m \times K^n$

<u>31.</u> Which of the function/mapping is neither one-to-one nor onto?