| Black model for valuation of
Interest rate option | Interest rate option: option to enter a FRA in the future. Value of a call option on an (M x N) FRA can be calculated as | |--|---| | | $C_0 = AP \times e^{-r \times (Actutal/365)} \times [FRA_{M \times N} \times N(d_1) - X \times N(d_2)] \times Notional \ principal$ | | | $AP = accrual\ period = Actual/365$ | | | | | | Equivalencies: - Long FRA = Long interest rate call + Short interest rate put (exercise rate = current FRA rate) | | | - Short FRA = Short interest rate call + Long interest rate put (exercise rate = current FRA rate) | | | - Interest rate cap = series of interest rate call with different maturities and same exercise price | | | - Interest rate floor = series of interest rate put with different maturities and same exercise price | | | - Payer swap = long cap + short floor (exercise rate on cap = exercise rate on floor) | | | - Exercise rate on floor = exercise rate on cap = market swap fixed rate → value on cap = value on floor | | Black model for valuation of | Swaption: option that gives the holder the right to enter into interest rate swap | | Swaption | Payer swaption : fixed-rate payer (receive float) | | | Receiver swaption: fixed-rate receiver (pay float) | | | Swaption = option on series of CF (annuity) @ each settlement date of the underlying swap that equal to difference between exercise rate on swaption and market swap fixed rate | | | $PAY = AP \times PVA \times [SFR \times N(d_1) - X \times N(d_2)] \times Notional\ principal$ | | | $REC = AP \times PVA \times [X \times N(-d_2) - SFR \times N(-d_1)] \times Notional \ principal$ | | | | | | In which: PAY = payer swaption | | | REC = receiver swaption | | | $AP = 1/Number\ of\ settlement\ periodsper\ year\ of\ the\ underlying\ swap$ | | | SFR = current marke swap fixed rate | | | SFR = current marke swap fixed rate $d_1 = \frac{\ln(SFR/X) + (\sigma^2/2) \times T}{\sigma^2 \times \sqrt{T}}$ | | | $\sigma \times \sqrt{T}$ Equivalencites $\sigma \times \sqrt{T}$ | | | - Receiver swap = Long receiver swaption + Short payer swaption (same exercise rates) | | | - Payer swap = Short receiver swaption + Long payer swaption (same exercise rates) | | | - If exercise rate is set so that values of payer swaption = values of receiver swaption → exercise rate - market swap fixed rate | | | - Long callable bond = option-free bond + short receiver swaption | | | - Long callable bond = option-free bond + short receiver swaption Greeks: sensitivity that capture the relationship between each input and the option price - Inputs: asset price, exercise price, asset price volatility, time to expiration, risk-free rate - Greeks: + Delta: relationship between changes in asset price and changes in option price | | Option Greeks | Greeks : sensitivity that capture the relationship between each input and the option price | | | - Inputs : asset price, exercise price, asset price volatility, time to expiration, risk-free rate | | Option Greeks - Delta | - Greeks : | | | + Delta : relationship between changes in asset price and changes in option price + Gamma : capture the curvature of option value vs. stock price relationship + the option to the curvature of option value vs. stock price relationship + the option to the curvature of option value vs. stock price relationship + the option to the curvature of option value vs. stock price relationship to the option vs. | | | + Vega : measure sensitivity of option price to changes in vol. lifty or recommenderlying asset | | | + Rho : measure the sensitivity of option price to the fire rate | | | + Theta: measure the sensitivity of option like to the lassage of time | | | Delta: relationship het were landers, asset price and changes in aption price | | Option Greeks - Deita | - Call ratio left a spot tite. Underlying asset — Tall on the decision of | | | Propried to negative - ↑ Underlying as to rice >> Propried ion value | | | pelta liculation: | | | $Delta_C = e^{-\delta imes T} imes N(d_1) o Out\ of\ the\ money:\ Delta_C\ moves\ closer\ to\ 0\ ; In\ the\ money:\ Delta_C\ moves\ closer\ to\ e^{-\delta imes T}$ | | | $Delta_P = e^{-\delta \times T} \times N(-d_1) \rightarrow Out \ of \ the \ money: \ Delta_P moves \ closer \ to \ 0; In \ the \ money: \ Delta_P moves \ closer \ to \ -e^{-\delta \times T}$ | | | Relationship between changes Call / Put option value vs Changes in asset price | | | | | | $\Delta C = Delta_C \times \Delta S$ $\Delta P = Delta_P \times \Delta S$ | | Option Greeks - Gamma | Gamma : Capture the curvation of option value vs. stock price relationship → the rate of change in delta | | | Long position in calls and puts : positive gamma | | | - Short option → lower gamma | | | - Long option → increase gamma | | | Gamma is highest for at-the-money options Gamma is low for deep-in-the-money or deep-out-of-money | | Option Greeks - Vega | $\Delta C = Delta_C \times \Delta S + \frac{1}{2} \times Gamma \times \Delta S^2$ | | | $\Delta P = Delta_P \times \Delta S + \frac{1}{2} \times Gamma \times \Delta S^2$ | | | = | | | Vega: measure the sensitivity of the option price to changes in volatility of returns on underlying asset Higher volatility → Increase value f call / put option → positive vega for both call / put | | | g, , moreous route roun, postore regular both cull, put | | Option Greeks - Rho | Rho : measure the sensitivity of the option price to change in risk-free rate | | | (*) Price of European call / put option does not change mch if use different inpts for risk-free rate | | Option Greeks - Theta | Theta: sensitivity of option price to passage of time | | | Call / Put option approach maturity → decrease spculative vaulue → call / put value decrease (except for deep-in-the-money put options, that might increase value as time passes) | | | | | Delta Hedge | Delta-neutral portfolio (delta-neutral hedge): long stock position + short call (or long put) option position > value of portfolio does not change as stock price changes | | | number of shares hedged | | | Number of snort can needed for detta neage =delta of call option | | | Number of long put needed for delta hedge = $\frac{number \text{ of shares hedged}}{number \text{ of shares hedged}}$ | | | delta of put option | | Gamma risk | Gamma risk : risk that stock price might suddenly jump, leaving delta-hedged portfolio unhedged | | | |