Concepts	Description			
	Common probability distribution			
Probability distribution	Probabilities of all possible outcomes for a random variable.			
Probability function	Sum of all probabilities of all possible outcomes = 1 Probability function - probability that a candom variable = a specific value			
	p(x) = P(X=x)			
Discrete random variable vs.	Discrete randome variable	Continuous random variable		
Continuous random variable	- Limited number of possible outcomes	- Unlimited number of possible outcomes		
	- A measurable and positive probabilities for each outcome	 Only measurable probabilities for a range of outcome. Probability of any single outcome = 0 		
		- Could only consider $P(x1 \le X \le x2)$; $p(x1) = p(x2) = 0$		
	- p(x) = 0 → x cannot occur, p(x) > 0 → x can occur			
Cummulative distribution function	tion Cummulative distribution function : probability that a random variable \leq a specific values $F(x) = P(X \leq x)$			
(cdf)				
Discrete uniform random variable	able Discrete uniform random variable : probabilities for all possible outcomes are equal			
	p(x1) = p(x2) = p(x3) = p(x4) = p(x5)			
Binomial random variable	Binomial random variable : number of "success" in a given number of trials, where outcome Bernoulli random variable : Binominal random variable in which the number of trials = 1	can be either "success" or "failure"		
	n!			
	$p(x) = \frac{n!}{(n-x)! \times x!} \times p^{x} \times (1-p)^{n-x}$			
	In which: n = m chability of success in each trial			
	F F			
Expected value and variance of	Expected value of $X = E(X) = n \times p$			
Binomial random variable	Variance of $X = n \times n \times (1 - n)$			
Tracking error	Tracking error = total return of the portfolio - total return of the benchmark			
Continuous uniform distribution	Continuous uniform distribution : whore probability of X accuring in a possible range - Long	th of the range - hot could be like yours		
Continuous uniform distribution	Continuous uniform distribution . where probability of X occurring in a possible range – teng	ti of the range + but of in po the values		
	$a \leq x \leq x \leq \leq h \rightarrow P(x \leq Y \leq x) - \frac{x_2 - x_1}{2}$	500		
	$\frac{a \leq x_1 \leq x_2 \leq b f(x_1 \leq x \leq x_2) - b - a}{b - a}$			
Normal distribution	- Symetrical hell-shaped single neak (@ the exact cent of the distribution)			
	- Mean = Median = Mode (@ the exact control of net stribution)			
	- Skew = 0			
	- Kurtosis = 3			
	hrevier nade	8		
Univariate distributions /	oniv riate astributions : Distribution of a single rand or variable			
Multivariate distributions	Multivariate distributions : probabilities for more than 1 variables, meaningful when behavi	our of each random variable is dependent upon the behavour of others		
	Multivariate could be describe by :			
	- mean of individual random variables $(\mu_1, \mu_2, \mu_3,, \mu_n)$ - variance of each individual randome variables $(\sigma_1^2, \sigma_2^2, \sigma_3^2,, \sigma_n^2)$			
	- pair wise correlation = $0.5 \times n \times (n-1)$			
Confident interval	Confident interval : range of values around an expected outcome within which we expect th	e actual outcome to be some specific % of the time		
	$\overline{X} - 1s \le X \le \overline{X} + 1s \to 68\%$ confidence interval			
	$-1.65s \le X \le X + 1.65s \rightarrow 90\% \text{ confidence interval}$			
	$\overline{X} - 2.58s \le X \le \overline{X} + 2.58s \rightarrow 99\%$ confidence interval			
Standard normal distribution /	Standard normal distribution : has mean = 0 ; standard deviation = 1			
z-value	z-value : number of standard deviations a given observation is from the population mean.			
	$z - value = \frac{observation - population mean}{standard deviation} = \frac{x - \mu}{\sigma}$			
Shortfall risk	Shortfall risk : probability that a portfolio's value < a specific value over a given period of tim	ie.		
F(P) = P				
	Safety First Ratio = $\frac{\mu(n_P) - n_T}{\sigma_P}$			
	In which: $B_{\rm c} = Target return$			
Lognormal distribution	$Lognormal distribution = e^x$, where x is normally distributed			
	Characteristic of lognormal distribution :			
	- Lognormal distribution is skewed to the right			
	Lognormal distribution is often used to model asset prices (because it cannot be negative, and can take any positive value)			

Concepts	Description			
	Sampling and estimation			
Simple random sampling	Simple random sampling : method of selecting a sample in such a way that each item / person in the population being studied has the same likelihood of being included in the sample			
Sampling distribution	Sampling distribution : probability distribution of all possible sample statistics compounded from a set of equal equal-size samples that were randomly drawn from the sample population			
Sampling error	ling error : difference between sample statistic (mean, variance, standard deviation of the sample) and its corresponding population parameter (mean, variance, standard deviation of opulation) iampling error of mean = sample mean - population mean			
Chunkifind and down and all a				
Stratined random sampling	tratified random sampling : use a classification system to separate the population \rightarrow smaller groups, based on 1 or more distinguishing characteristics			
Time-series data /	Time-series data : consist observations taken over a period of time at specific and equally spaced time intervals (e.g.: monthly returns of Stock A from 2014 to 2017)			
Cross-sectional data /	Cross-sectional data : sample of observation taken at a single point in time (e.g.: EPS of all Stock as at 31/12/2017)			
Longtitudinal data /	Longtitudinal data : observations over time of multiple characteristics of same entity (e.g.: GDP, inflation, unemployment rate of Vietnam from 2014 to 2017)			
Panel data	Panel data : observation over time of same characteristic for multipled entities (e.g.: EPS of all companies for the recent 3 years)			
Central limit theorem	Central limit theorem : for simple random samples size <i>n</i> (from a population with mean μ , finite variance σ^2), sampling distribution of the sample mean (\bar{x}) approaches a normal			
	probability distribution with mean μ and variance = $\frac{1}{n}$ as the sample size becomes larger			
	Sample size (n) is sufficiently large ($n \ge 30$) \rightarrow distribution of sample means will be approximately normal Mean of the population (μ) = mean of the distribution of all possible sample means			
Standard error of the sample mean	1 Standard error of the sample mean : standard deviation of the distribution of the sample means			
	$\sigma_{\bar{x}} = \frac{\sigma_{\bar{x}}}{\sqrt{n}}$			
	in which :			
	$a_{\pi} = \text{standard error of the sample mean}$			
	$\sigma = standard deviation of the population$			
	n = sample size			
	In case the standard deviation of the population is unknown, could use the standard deviaton of the sample			
	$s_{\bar{x}} = \frac{s}{\sqrt{n}}$	CU		
	in which :			
	$s_{\bar{x}}$ = standard error of the sample mean			
	s = standard deviation of the sample $n = sample size$			
Desirable properties of an estimator	Desirable properties of an estimator : - Unbiasedness : sign of estimation error random - Efficiency : lower samon, so the nan any other unbiased estimator - Consistency with the offermining error decreases with each for			
-				
Point estimates /	of onestimates : sample values used to estimate population of meter (e.g.: sample mean is an estimator of the popula	ation mean)		
Confidential internal	Confidential interval : range of values in which the population parameter is expected to lie			
Student's t-distribution	Student's t-distribution is :			
	- bell-shaped probability distribution			
	 - symmetrical about its mean (mean = 0) - to construct confidence intervals based on small samples (n < 30) from populations with unknown variance and a normal distribution - defined by a single parameter : degree of fredom (df) = number of sample observations (n) - 1 (for sample mean) 			
	- more probability in the tails than normal distribution - \uparrow df \rightarrow more observations near the center of the distribution + \downarrow % of observations in tails \rightarrow shape of t-distribution more closely approaches a standard normal distribution			
Confidence interval	Confidence interval : range of values within which the actual value of parameter will lie, given the probability of 1 - $lpha$			
	In which:			
	α = level of significant			
	$1 - \alpha = \text{degree of confidence}$			
	Formula for confidence interval for the population mean - normal distribution with a known variance			
	Confidence interval = Point estimate \pm Reliability factor \times standard error = $\bar{x} \pm z_{\alpha/2} \times \frac{\sigma}{\sqrt{2}}$			
Formula for confidence inerval for the population mean - normal distribution with unknown variance				
	Confidence interval = $\bar{x} \pm t_{\alpha/2} \times \frac{\sigma}{\sqrt{n}}$			
	Examples of interpretation:			
	 Probabilistic interpretation : 99% of resulting confidence intervals will include the population mean Practical interpretation : 99% confident that the population mean score is between 73.55 and 86.45 			
		Carellinear (1.4 - 100)		
Criteria for selecting the		Small sample (n < 30)	Large sample (n > 30)	
appropriate test statistic	Invormal distribution - known variance	z - statistic	z - statistic	
	Normal distribution - unknown variance	t - statistic	t - statistic	
	Nonnormal distribution - known variance	N/A	z - Statistic	
		N/A	i - Statistic	
	(Note : samples are drawn randomly from the population)			