Gamma risk	Gamma risk : risk that stock price might suddenly jump, leaving delta-hedged portfolio unhedged
	Number of short call needed for delta hedge = $\frac{number of shares hedged}{delta of call option}$ Number of long put needed for delta hedge = $\frac{number of shares hedged}{delta of put option}$
Delta Hedge	Delta-neutral portfolio (delta-neutral hedge) : long stock position + short call (or long put) option position \rightarrow value of portfolio does not change as stock price changes
Option Greeks - Theta	Theta : sensitivity of option price to passage of time Call / Put option approach maturity \rightarrow decrease spculative vaulue \rightarrow call / put value decrease (except for deep-in-the-money put options, that might increase value as time passes)
Option Greeks - Rho	Rho : measure the sensitivity of the option price to change in risk-free rate (*) Price of European call / put option does not change mch if use different inpts for risk-free rate
Option Greeks - Vega	Vega : measure the sensitivity of the option price to changes in volatility of returns on underlying asset Higher volatility \rightarrow Increase value f call / put option \rightarrow positive vega for both call / put
	- Long option \rightarrow increase gamma Gamma is highest for at-the-money options Gamma is low for deep-in-the-money or deep-out-of-money $\Delta C = Delta_C \times \Delta S + \frac{1}{2} \times Gamma \times \Delta S^2$ $\Delta P = Delta_P \times \Delta S + \frac{1}{2} \times Gamma \times \Delta S^2$
Option Greeks - Gamma	Gamma : Capture the curvation of option value vs. stock price relationship → the rate of change in delta Long position in calls and puts : positive gamma - Short option → lower gamma
	Relationship between changes Call / Put option value vs Changes in asset price $\Delta C = Delta_C \times \Delta S$ $\Delta P = Delta_P \times \Delta S$
	- Fit option delta: positive - \uparrow Underlying assist prote \rightarrow (a. C. ption value - Fit option delta: negative - \uparrow Underlying assist price \rightarrow (b. option value Delta calculation : $Delta_{C} = e^{-\delta \times T} \times N(d_{1}) \rightarrow Out \text{ of the money}: Delta_{C} \text{ moves closer to 0}; In the money: Delta_{C} \text{ moves closer to } e^{-\delta \times T}$ $Delta_{P} = e^{-\delta \times T} \times N(-d_{1}) \rightarrow Out \text{ of the money}: Delta_{P} \text{moves closer to 0}; In the money: Delta_{P} \text{moves closer to } -e^{-\delta \times T}$
Option Greeks - Delta	 + Delta : relationship between changes in asset price and changes in opport ant + Gamma : capture the curvature of option value vs. stock price rel through the nerate of change in delta + Vega : measure sensitivity of option price to change in role lility or return on underlying sset + Rho : measure the sensitivity of option price to change in role in the passage of time + Theta : relationship between changes in asset price and changes in the passage of time Delta : relationship between changes in asset price and changes in the normality of price + role and the positive - ↑ Underlying assist price and changes in value
Option Greeks	Greeks : sensitivity that capture the relationship between each input and the option price - Inputs : asset price, exercise price, asset price volatility, time to expiration, risk-free rate - Greeks : - Lotto: scalar input is between these and these to the price of the price
	Equivalence $\sigma \times \sqrt{T}$ - Receiver swap = Long receiver swaption + Short payer swaption (same exercise rates) - Payer swap = Short receiver swaption + Long payer swaption (same exercise rates) - If exercise rate is set so that values of payer swaption = values of receiver swaption \rightarrow exercise rate - market swap fixed rate - Long callable bond = option-free bond + short receiver swaption Greeks : sensitivity that capture the relationship between each input and the option price - Inputs : asset price, exercise price, asset price volatility, time to expiration, risk-free rate - Greeks : + Delta : relationship between changes in asset price and changes option ann + Garman : capture the cumpture of extension in the option price is the first payor in delta.
	$REC = AP \times PVA \times [X \times N(-d_2) - SFR \times N(-d_1)] \times Notional principal$ In which: PAY = payer swaption REC = receiver swaption AP = 1/Number of settlement periodsper year of the underlying swap SFR = current marke swap fixed rate $d_1 = \frac{\ln(SFR/X) + (\sigma^2/2) \times T}{\sigma \times T}$
Swaption	Payer swaption : fixed-rate payer (receive float) Receiver swaption : fixed-rate receiver (pay float) Swaption = option on series of CF (annuity) @ each settlement date of the underlying swap that equal to difference between exercise rate on swaption and market swap fixed rate $PAY = AP \times PVA \times [SFR \times N(d_1) - X \times N(d_2)] \times Notional principal$
ilack model for valuation of	Equivalencies: - Long FRA = Long interest rate call + Short interest rate put (exercise rate = current FRA rate) - Short FRA = Short interest rate call + Long interest rate put (exercise rate = current FRA rate) - Interest rate cap = series of interest rate call with different maturities and same exercise price - Interest rate floor = series of interest rate put with different maturities and same exercise price - Interest rate floor = series of interest rate on cap = exercise rate on floor) - Exercise rate on floor = exercise rate on cap = market swap fixed rate → value on cap = value on floor Swaption : option that gives the holder the right to enter into interest rate swap
llack model for valuation of nterest rate option	Interest rate option : option to enter a FRA in the future. Value of a call option on an (M × N) FRA can be calculated as $C_0 = AP \times e^{-r \times (Actutal/365)} \times [FRA_{M \times N} \times N(d_1) - X \times N(d_2)] \times Notional principal$ $AP = accrual period = Actual/365$