

PMT

dipoles	1	
hydrogen bond between O in one O-H and H in the other O-H	1	
lone pair from O involved in the H-bond	1	[3]

19.	(a)	(i)	(volatile components) can escape/distil out	1	
			ethanal is most volatile/b pt less than 60°C/partial oxidation	1	
		(ii)	(volatile components) cannot escape/ refluxed	1	
			complete oxidation will be achieved/oxidised to the acid	JK	
	(b)	2.	complete oxidation will be achieved/oxidised to the acid $_{5}OH + 2[O] \rightarrow CH_{3}COOH + H_{2}O$ (CH ₃ COOH + H ₂ O \checkmark)	2	
	(c)	spec	(CH ₃ COOH + H ₂ O \checkmark) trum C 80 came only shows arsorpe) C 1700 cm ⁻¹ for the C=O	1 1	
		the c	other two spectra contain the OH group absorption at approx 3000 cm ⁻¹	1	[9]

20.	(a)	(i)	reaction 1	1
		(ii)	reaction 4	1
		(iii)	reaction 3	1