
The 1950s and 60s saw the introduction of high-level languages, such as Fortran and

Algol.

These languages provide mechanisms, such as subroutines and conditional looping

constructs, which greatly enhance the structure of a program, making it easier to express

the progression of instruction execution; that is, easier to visualise program flow. Also,

these mechanisms are an abstraction of the underlying machine instructions and, unlike

assembler, are not tied to any particular hardware.

Thus, ideally, a program written in a high-level language may be ported to a different

machine and run without change. To produce executable code from such a program, it is

translated to machinespecific assembler language by a compiler program, which is then

coverted to machine code by an assembler (see Appendix B for details on the compilation

process).

Compiled code is not the only way to execute a high-level program. An alternative is to

translate the program on-the-fly using an interpreter program (e.g., Matlab, Python, etc).

Given a text-file containing a high-level program, the interpreter reads a high-level

instruction and then executes the necessary set of low-level operations. While usually

slower than a compiled program, interpreted code avoids the overhead of compilation-

time and so is good for rapid implementation and testing.

Another alternative, intermediate between compiled and interpreted code, is provided by

a virtual machine (e.g., the Java virtual machine), which behaves as an abstract-machine

layer on top of a real machine. A high-level program is compiled to a special byte-code

rather than machine language, and this intermediate code is then interpreted by the virtual

machine program. Interpreting byte code is usually much faster than interpreting high-

level code directly. Each of these representations has is relative advantages: compiled

code is typically fastest, interpreted code is highly portable and quick to implement and

test, and a virtual machine offers a combination of speed and portability.

The primary purpose of a high-level language is to permit more direct expression of a

programmer’s design. The algorithmic structure of a program is more apparent, as is the

flow of information between different program components. High-level code modules

can be designed to “plug” together piece-by-piece, allowing large programs to be built

out of small, comprehensible parts. It is important to realise that programming in a high-

level language is about communicating a software design to programmers not to the

computer. Thus, a programmer’s focus should be on modularity and readability rather

than speed. Making the program run fast is (mostly) the compiler’s concern.

Development of “C” (history)
The C programming language is a general-purpose, high-level language that was

originally developed by Dennis M. Ritchie to develop the UNIX operating system at AT

& T Bell Laboratories of USA. C was originally first implemented on the DEC PDP-11

computer in 1972.

In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available

description of C, now known as the K&R standard.

Preview from Notesale.co.uk

Page 3 of 5

