149)	In what way is the longitudinal stability affected by the degree of positive camber of the aerofoil?	140)	The lift coefficient (CL) of an aeroplane in steady horizontal flight is 0.35. Increase in angle of attack of 1 degree will increase CL by 0.079. A vertical up gust
A	Positive, because the centre of pressure shifts rearward at increasing angle of attack.		instantly changes the angle of attack by 2 degrees. The load factor will be :
B	Negative, because the lift vector rotates forward at increasing angle of attack.	A	1.9
С	Positive, because the lift vector rotates backward at increasing angle of attack.	B	1.45
D	No effect, because camber of the aerofoil produces a constant pitch down moment coefficient, independent of angle of attack.	D	0.45
137)	How would the exterior appearance of an aeroplane change, when trimming for speed increase ?	141)	Which aeroplane behaviour will be corrected by a yaw damper ?
A	The elevator is deflected further up by a downward deflected	A	Spiral dive.
	trim tab	В	Buffeting.
В	The elevator is deflected further downward by means of a movable horizontal stabiliser	С	Dutch roll.
С	The exterior appearance of the aeroplane will not change	D	Tuck under.
D	Elevator deflection is increased further downward by an		
	upward deflected trim tab	142)	The aft movement of the centre of pressure during the acceleration through the transonic flight regime will:
138)	Trailing edge flap extension will:	A	decrease the static lateral statem
A	decrease the critical angle of attack and decrease the value of CLmax.	B	increase the longitudinal stability.
B	increase the critical angle of attack and decrease the value of CLmax.	D	increase the cardic lateral stability.
С	decrease the critical angle of at a contract of cLmax.	143)	The relative thickness of an aerofoil is expressed in:
D	increase the critical angle of attack and increase the value of		
	CLmax.	A	camber.
120)	The polar curve of an aerofoil is a graphic relation	В	meters.
159)	between :	С	degrees cross section tail angle.
A	TAS and stall speed	D	% chord.
B	Angle of attack and CL		
С	CD and angle of attack	144)	The frontal area of a body, placed in a certain airstream is increased by a factor 3. The shape will not alter. The
D	CL and CD		aerodynamic drag will increase with a factor :
		A	1.5 .
		В	3.
		С	9.
		D	6.

205)	The Mach-trim function is installed on most commercial jets in order to minimize the adverse effects of :	210)	The positive manoeuvring limit load factor for a light aeroplane in the utility category in the clean configuration is:
A	compressibility effects on the stabilizer	1	
B	changes in the position of centre of pressure	A R	4.4
С	increased drag due to shock wave formation	5	
D	uncontrolled changes in stabilizer setting	С	2.5
		D	3.8
206)	After take-off the slats (when installed) are always retracted later than the flaps. Why ?	211)	The trailing edge flaps when extended :
A	Because FLAPS EXTENDED gives a large decrease in stall speed with relatively less drag.	A	significantly increase the angle of attack for maximum lift
B	Because SLATS EXTENDED gives a large decrease in stall speed with relatively less drag.	B	significantly lower the drag
С	Because SLATS EXTENDED provides a better view from	С	worsen the best angle of glide
C	the cockpit than FLAPS EXTENDED.	D	increase the zero lift angle of attack
D	Because VMCA with SLATS EXTENDED is more favourable compared to the FLAPS EXTENDED situation.	212)	Sensitivity for spiral dive will occur when :
207)	What increases the stalling angle of attack ? Use of :	A	the dutch roll tendency is too strongly suppressed by the yaw damper.
A	flaps	B	the static directional stability is politive and the static lateral
B	spoilers	_	stability is relatively weak.
С	fuselage mounted speed-brakes		the state inectional stability is negative and the static lateral stability is positive.
D	slats from I	D	the static interal and directional stability are both negative.
208)	What data members from the Buffet Group 200	213)	Extension of FOWLER type trailing edge lift augmentation devices, will produce:
A	The values of MMO at different weights and altitudes.	A	a force which reduces drag.
B	The values of Mcrit at different weights and altitudes.	B	a nose-down pitching moment.
С	The values of the Mach Number at which low speed and shock-stall occur at different weights and altitudes.	С	no pitching moment.
D	The values of the Mach Number at which low speed and Mach Buffet occur at different weights and altitudes.	D	a nose-up pitching moment.
		214)	The additional increase of drag at Mach Numbers above
209)	The regime of flight from the critical Mach number up to $M = 1.3$ is called the	A	wave drag.
A	transonic range.	R	increased angle of attack
B	supersonic range.	C	
			increased interference drad.
С	hypersonic range.	C D	

99)	In a twin-engined jet powered aeroplane (engines mounted below the low wings) the thrust is suddenly increased. Which elevator deflection will be required to	104)	In the transonic range lift will decrease at the shock stall due to the
	maintain the pitching moment zero ?	A	first appearance of a shock wave at the upper side of the wing.
A	No elevator movement will required because the thrust line of the engines remains unchanged.	B	appearance of the bow wave.
B	It depends on the position of the centre of gravity.	С	separation of the boundary layer at the shock waves.
С	Down.	D	attachment of the shock wave on the trailing edge of the wing.
D	Up.		-
100)	VA is:	105)	VMO :
,		A	should be chosen in between VC and VD
A	the speed that should not be exceeded in the climb.	B	is equal to the design speed for maximum gust intensity.
В	the maximum speed at which maximum elevator deflection up is allowed.	С	is the calibrated airspeed at which MMO is reached at 35
С	the maximum speed at which rolls are allowed.	מ	should be not greater than VC
D	the speed at which a heavy transport aeroplane should fly in turbulence.	<i>D</i>	Should be not greater than VC.
		106)	The speed for minimum glide angle occurs at a certain
101)	If the altitude is increased and the TAS remains constant in the standard troposphere the Mach Number will:		aerodynamic coefficients(s) ?
A	decrease.	A	(CL/CD)max
R	not change	B	CLmax 2 CLmax
6		10	CECD^2)max
C	increase or decrease, depends of the type of aeroplane.	D	
D	increase.	20	01
102)	An aeroplanemas i stall speed of 100 kt at two active of n=1. In a turn with a load factor of n=2, the stall speed is:	217)	The pitch up effect of an aeroplane with swept wing in a stall is due to the
A	70 kt	A	aft movement of the centre of gravity.
R	200 kt	B	forward movement of the centre of gravity.
<i>в</i>		С	wing root stalling first.
C	141 Kt	D	wing tip stalling first.
D	282 kt		
		94)	The function of the stick pusher is:
103)	The lift to drag ratio provides directly the	Δ	to activate and nuch the stick forward at or beyond a certain
A	distance for climb up to a certain altitude.	Л	value of angle of attack.
B	glide distance from a given altitude at zero wind.	B	to activate and push the stick forward prior to stick shaker.
С	glide distance from a given altitude.	С	to vibrate the controls.
D	distance for horizontal flight.	D	to pull the stick, to avoid a high speed stall.

391)	(For this question use annex 081-6261A) Which point shown in the figure corresponds with CL for minimum horizontal flight speed?	396)	To increase the critical Mach number a conventional aerofoil should
A		A	have a low thickness to chord ratio.
D		B	have a large camber.
D	Point a	С	be used with a high angle of attack.
С	Point b	D	have a large leading edge radius.
D	Point c		
377)	There are two types of boundary layer: laminar and turbulent. One important advantage the turbulent boundary layer has over the laminar type is that :	397)	Increasing air pressure will have the following effect on the drag of an aeroplane (angle of attack, OAT and TAS are constant):
A	it has less tendency to separate from the surface	A	The drag is only affected by the ground speed.
R	it is thingor	B	The drag increases.
D		С	This has no effect.
C	skin friction drag is less	D	The drag decreases.
D	energy is less		
393)	Which statement is correct about a spring tab ?	398)	Which statement regarding the gust load factor on an aeroplane is correct (all other factors of importance being constant) ?
A	At high IAS it behaves like a servo tab		1. Increasing the aspect-ratio of the Virrevill increase
B	At low IAS it behaves like a servo tab		2 Increase the sust lead
С	At high IAS it behaves like a fixed extension of the elevator		faces S
D	Its main purpose is to increase stick force per g	N O	1 and 2 are conject.
394)	A propeller is turning to the right seen from behind. The	25	1 and 2 are incorrect.
A	roll the aeroplane to the right.	D	1 is correct and 2 is incorrect.
B	yaw the aeroplane to the left.		
С	roll the aeroplane to the left.	399)	Which of the following statements about the stall of a straight wing aeroplane is correct?
D	yaw the aeroplane to the right.	A	The nose down effect is the result of increasing downwash, due to flow separation.
205)	Which statement is correct shout a normal shock ways 2	B	The horizontal tail will stall at a higher speed than the wing.
395)	which statement is correct about a normal shock wave ?	С	Just before the stall the aeroplane will be have a nose-down
A	The airflow changes from supersonic to subsonic	P	
B	The airflow changes direction	D	Buffeting is the result of flow separation on the tail plane.
С	The airflow changes from subsonic to supersonic		
D	The airflow expands when passing the aerofoil		

232) When are outboard ailerons (if present) de-activated ? 237) The speed of sound is affected by the: A Landing gear retracted. A temperature of the air. B B Landing gear extended density of the air. С Flaps (and slats) retracted or speed above a certain value. С pressure of the air. D D Flaps (and/or slats) extended or speed below a certain humidity of the air. value.. 226) For an aeroplane with one fixed value of VA the Increase of wing loading will: 233) following applies. VA is : the speed at which the aeroplane stalls at the manoeuvring A A increase the stall speeds. limit load factor at MTOW. B decrease the minimum gliding angle. B the maximum speed in smooth air С increase CLmax. С the speed at which unrestricted application of elevator control can be used, without exceeding the maximum D decrease take off speeds. manoeuvring limit load factor D just another symbol for the rough air speed (For this question use annex 081-6263A) 234) Which point in the diagram gives the best glide condition? 239) (For this question use annex 081-6269A) Which type of flap is shown in the picture? real tap Notest A Point c R Point d Point b С D Point a 235) In a mechanically controlled are large he most centre of gravity co forward allowable position of Deploying a Fowler flap, the flap will: be limited b A turn down, then move aft. A engine thrust, engine location. B just move aft. B trim system, trim tab surface. С just turn down. wing surface, stabilizer surface. С D move aft, then turn down. D elevator capability, elevator control forces. When an aeroplane is flying through the transonic range 241) 236) Induced drag at constant IAS is affected by: with increasing Mach Number the centre of the pressure of the wing will move aft. This requires: A engine thrust. A a stability augmentation system. B aeroplane weight. B much more thrust from the engine. C aeroplane wing location. С a higher IAS to compensate the nose down effect. D angle between wing chord and fuselage centre line. D a pitch up input of the stabilizer.

242)	The (1) stick force stability and the (2) manoeuvre stability are positively affected by:	247)	The stalling speed in IAS will change according to the following factors:
A	(1) forward C.G. position (2) forward CG. position.	A	May increase when the c.g. moves forward, with higher altitude and due to the slip stream from a propellor on an
В	(1) forward C.G. position (2) aeroplane nose up trim.		engine located forward of the wing
С	(1) aft C.G. position (2) aft CG. position.	В	Will increase in a turn, higher temperature and will increase when the c.g. moves aft
D	(1) aeroplane nose up trim (2) aeroplane nose up trim.	С	Will increase with increased load factor, more flaps and increased bank angle in a turn
243)	What happens during an engine failure with two similar aeroplanes with wing mounted engines, one of them with jet engines, the other one with co-rotating propellers:	D	May increase with altitude, especially high altitude, will increase during icing conditions and will increase when the c.g. moves forward
A	More roll tendency for the propeller aeroplane.	248)	The angle of attack for a propeller blade is the angle between blade chord line and:
В	The same yaw tendency for both aeroplanes regardless of left or right engine failure.	A	Local air speed vector.
С	The same roll tendency for both aeroplanes.	В	Direction of propeller axis.
D	Less roll tendency for the propeller aeroplane.	С	Aeroplane heading.
		D	Principal direction of propeller blade.
244)	Lift is generated when:		
A	a certain mass of air is accelerated downwards.	249)	A Machtrimmer:
B	the shape of the aerofoil is slightly cambered.	A	is necessary for conversation of the autopilot at high Mach
С	an aerofoil is placed in a high velocity air stream.	NO	has no effect on the shape of the elevator position versus
D	a certain mass of air is retarded.		speed (IAS) curve for a fully hydraulic controlled aeroplane.
	view 10	31	Numbers.
245)	An aeroplane accelerate s for bookt to 160 kt at a loan factor equal to the induced drag coefficient (induced induced drag (ii) after with the following factors:	D	increases the stick force per g at high Mach Numbers.
A	(i) 1/2 (ii) 1/16	250)	The normal stall recovery procedure for a light single
B	(i) 4 (ii) 1/2		engined aeroplane is:
С	(i) 1/16 (ii) 1/4	A	idle power and stick roll-neutral nose-down and no other corrections.
D	(i) 1/4 (ii) 2	В	idle power and stick neutral, waiting for the natural nose- down tendency.
246)	Flaperons are controls which are used simultaneously as	С	full power and stick roll-neutral nose-down, correcting for angle of bank with rudder.
A	flaps and speed brakes.	D	full power and stick roll-neutral nose-down, correction for angle of bank with stick.
B	flaps and elevator.		
С	ailerons and flaps.		
D	ailerons and elevator.		

ailerons and elevator.

314)	In the transonic range the aeroplane characteristics are strongly determined by:	319)	Should a transport aeroplane fly at a higher Mach number than the 'buffet-onset' Mach number?
A	the IAS.	A	Yes, but only during approach.
B	the CAS.	B	Yes, if you want to fly fast at very high altitudes.
С	the Mach Number.	С	No, this is not acceptable
D	the TAS.	D	Yes, this causes no problems.
315)	On a swept wing aeroplane at low airspeed, the "pitch up" phenomenon:	320)	Which of the following statements is correct ? I When the critical engine fails during take-off the speed
A	is caused by boundary layer fences mounted on the wings.		VMCL can be limiting. II The speed VMCL can be limited by the available maximum roll rate
B	is caused by wingtip stall.	A	l is correct, Il is incorrect
С	never occurs, since a swept wing is a "remedy" to pitch up.	B	I is incorrect, II is correct
D	is caused by extension of trailing edge lift augmentation devices.	С	l is correct, II is correct
		D	I is incorrect, II is incorrect
316)	The unit of measurement of pressure is:		
A	lb/gal	321)	What will happen in ground effect ?
B	kg/dm²	A	a significant increase in thrust assuire
С	psi	B	the induced angle arettrick and induced drag decreases
D	kg/m³	10	the wing downwash on the tail surfaces increases
317)	Which of the following will reduce included of a ?	D	an in reast estrangth of the wing tip vortices
A	Extending the Dade	322)	Mcrit is the free stream Mach Number at which:
B	Elliptical lift distribution.	A	shockstall occurs.
С	Low aspect ratio.	B	the critical angle of attack is reached.
D	Flying at high angles of attack.	С	somewhere about the airframe Mach 1 is reached locally.
		D	Mach buffet occurs.
318)	(For this question use annex 081-6264A) Which point in the diagram gives the lowest speed in horizontal flight?	309)	The extreme right limitation for both V-n (gust and
A	Point b		manoeuvre) diagrams is created by the speed:
B	Point c	A	VMU
С	Point d	В	VD
D	Point a	C	VC
		D	Vflutter