In general, extensive properties are denoted using upper-case letters, while intensive properties
are denoted using lower-case letters. However, there are exceptions, including ONE NOTABLE
EXCEPTION: Temperature is denoted using upper-case T, even though it is an intensive

property.

State and Path Functions

A state function is a property whose value does not depend on the path taken to reach that
specific value. In contrast, functions that depend on the path from two values are call path
functions. Both path and state functions are often encountered in thermodynamics.

State Property or State Function

The property of a system that depends on the state variables is known as a state property. The
change in the state property does not depend upon how the process is carried out. That is, the
value of a state property depends only on the state of the system and not on the process by which
this state is reached. A function that depends only on the state variables is known as a state
function.
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Characteristics of state functions: Let z be a state function that depends upon two variables x and
y. This is written as

z=f(xy)

For a process (Statel) —(State2), the change in state functions only depends on the initial and
final states, regardless of the path taken. Using enthalpy as an example and assuming that the
parameter that changes is temperature, then this can be expressed through integrals, as

T,
/ dH = H(T,) — H(Ty)
T

This is equivalent to

AH = Hfm.al 5 Hz'm'tial



If we now use Boyle’s law (constant temperature):
o1=0. (T, P) and awo=a (T, Po) and using equation 2.2 we have

POU(T, P) = Po G (TyPo)  eooeeeeeeeeeeee e (2.5)

In this case, we keep temperature constant since Boyle’s law deals with constant temperature
condition.

From Equation 2.4,

a(Ty, Po) 7

0

o (T, Po) = ...(2.6)

Substituting (2.6) into (2.5) we obtain:

P o (T,P) :M.T ........................................ (2.7)
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If we now let R =P,
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Then the gas equation becomes
Where R is the universal gas constant.

Since —=

Then

P=pRT 2.9



pV = R*T
2.11

and the ideal gas equation f for n moles of a gas can be written as

pV = nR*T
212

We know n is given by mass/molecular weight, then n=M/m thus,
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m u\(

or b 0"
B =——T\e\|\| ﬁ(;)g“; ?’l 0“ 2’3—
peeV™ o

If each gas obeys separately the ideal gas law, then 2.13 can be written as

2.14

From Dalton’s law

R*T M.
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2.15



