means a and b are symbols.

The order Relation

If a, b \mathcal{E} R, then a is less than b, denoted by a
b, if b-a is positive numbers.

The difference of Two Real Numbers

If a and b are any two real numbers, then the difference of a an b in the stated order, denoted by a-b, equals the sum of a and -b, the additive inverse of b.

The system $\ensuremath{\mathbb{C}}$ of Complex Numbers

The set \mathbb{C} in which the equation $x^2 = a$ can be solved for all a is equal R, is called the set of complex numbers and its elements are called complex numbers

Definitions of imaginary numbers their conjugates and moduli

The ordered pair (a,0) in which the second member is zero has the properties of the real number a

Imaginary Number

The ordered pair (0,1) is denoted by the ι , read as Iota

Iota is called imaginary number because there is no real puncer x satisfying the property $x^2 = -1$

The number of the form ι b is called an imaginary number

Conjugated of Complex Numbers and

 $(a,-b) = a - \iota \iota$ is called the complex conjugates of $(a,b) = a + \iota b$

Modulus of a Complex Number

The modulus, magnitude or absolute value of a complex number $z = x + \iota y = (x,y)$

Subtraction of Complex Numbers

For all (a,b), (c,d)

(a,b)-(c,d) = (a-c)+(b-d)

The division of complex number

```
\frac{z_1}{z_2} = \frac{ac+bd}{c^2+d}, \frac{bc-ad}{c^2+d}
```

Where is

C is c²

D is d^2

2 | Page