VLOF: Lift off speed

- Short runways higher flaps to take-off faster lower VLOF but lowers climb performance
- Distant obstacles lower flaps higher VLOF, higher ground roll distance
- Higher with increased mass

V_{MCG}:

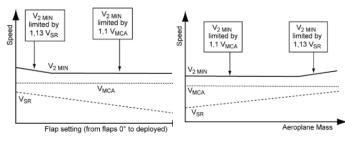
- Min control speed on the ground
- No nose-wheel steering & no crosswind used for determination
- Determined by engine thrust & rudder deflection
- Determined by primary aerodynamic control only
- $V_{MCG} < V_{EF} < V_1$

 V_1 :

- Pilot decides to abort take-off AT V₁ (At the last resort)
- Limited by V_{MCG} V_{R} & V_{MBE}
- Min value V_{MCG} , max value V_{R}
- Must not be exceeded by V_{MBE}
- **Can** be **higher** than V_{MU}
- Value exceeds correct V_1 value = ASD will exceed the ASDA
- V_1 increase but V_R the same = Increased ASD
- Higher value used with constant mass: TODR decrease & ASDR increase
- Reduced by inoperative anti-skid (Because you are braking manually you need a lower decision speed)
- OEI obstacle clearance reduces because of contaminated runway, but climb performance remains constant
- Increased with mass (Because higher mass requires more lift = more speed)
- Down slope decreases V₁

 V_R :

- Speed at which pilot should start to rotate the aeroplane
- If aircraft rotates earlier: Stabilizer trim setting miscalculated, centre of gravity too far aft the calculated V_R does **not cause** early rotation, it is just a calculated value) Speed to which rotation to the lift off angle is initiated Must not be less than 1.05V_{MCA} or V₁ econds are for **recognition** lax brake energy): Must not be exceeded by Val


- V_{EF}: 2 seconds are for recognition

V_{MBE} (Max brake energy):

- Must not be exceeded by V
- energy thus allows an increased mass (A good thing) If TOM is V_{MBE} limited TO U **shill** requi V_2 :
 - Take-of safety speed/take off climb speed or speed at 35ft
 - May not be less than 1.13 V_{sR} for turbojets
 - May not be less than 1.08 V_{sR} for turboprops
 - May not be less than 1.10 V_{MCA}
 - Limited by V_{MCA}: Large flap angles, high air pressure & low aircraft weight (What is good for thrust also increases adverse yaw OEI)
 - **Decreases with higher flaps**
 - Increased V₂ procedure(Improved take-off climb/climb performance procedure):
 - Only possible when an excess field length is available (ASD is not limiting)
 - Further screen height along runway •
 - Increases TODR & climb gradient for a given TOM •
 - V_{2MIN} :
 - Decrease with higher flaps if not limited by V_{MCA}
 - Uses V_{SR} & V_{MCA}

- Mass: Lower mass, lower speeds
- Density altitude: Density altitude increase, thrust decrease, lower V_{MCA} to counteract yaw OEI
- Low field elevation = lower speeds
- Flap settings: Higher flaps = decreased stall speed

