biological molecules

subtopic	learnt	RAG
3.1.1 Monomers and polymers		
3.1.2 Carbohydrates		
3.1.3 Lipids		
3.1.4.1 General properties of proteins		
3.1.4.2 Many proteins are enzymes		
3.1.5.1 Structure of DNA and RNA		
3.1.5.2 DNA Replication		
3.1.6 ATP		
3.1.7 Water		
3.1.8 Inorganic lons		

Most carbohydrates are polymers;

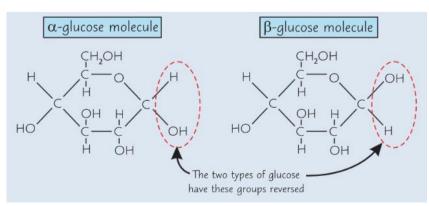
Polymers are large, complex molecules composed of monomer subunits joined together.

e.g.

Polymer: DNA, polypeptide

Monomer equivalent: nucleotides, amino acids

- esale.co.uk The elements carbon, oxygen,
- These monomers are mono



- These undergo condensation reactions to form disaccharides
 - o glucose + glucose → maltose
 - o glucose + fructose → sucrose
 - o glucose + galactose → lactose

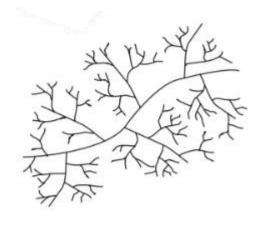
glucose

- is a hexose sugar 6 carbon atoms
- two isomers of glucose:
 - α-glucose
 - β-glucose

non-reducing

- 1) if the reducing sugars test is negative, there could be a non-reducing sugar present
- 2) to break the disaccharides to monosaccharides, add dilute hydrochloric acid in a water bath
- 3) neutralise with sodium hydrogencarbonate
- 4) repeat the Benedict's test
- 5) in the presence of the non-reducing sugar (that is now a reducing sugar as it is in a monomer form), there will be an orange-brown precipitate

starch


- main storage of glucose (and therefore energy) in plants
- when plants need energy, they breakdown starch to get alpha-glucose molecules needed for respiration
- starch is a mixture of two alpha-glucose polysaccharides:
 - o amylose
 - unbranched chain
 - coiled structure therefore compact
 - good for storage
 - amylopectin
 - branched chain
- esale.co.uk side branches_me k which was the molecule can get at

tefore, glucose cobe leased quickly

- ca co insoluble, so do not the water potential of a cell, another reason why it's good for storage
- the **iodine test** is done for the presence of starch

glycogen

- main storage in animals
- made of alpha-glucose monosaccharides
- many, many side branches
 - o energy can be released very quickly
- very compact molecule
- insoluble and therefore doesn't affect water potential

