Regulators of transcription

- > Nucleosomes
 - If DNA is wrapped around the histones it cannot be transcribed 0
 - A methyl group (CH_2) is an organic functional group that causes a section of DNA to wrap more tightly around histones
 - Prevents transcription of that particular allele
 - The gene becomes inactive, not expressed
 - The methylation patterns persist through cell division = keep on being methylated
 - Example: mammalian females have two X chromosomes, one become heavily methylated = inactive
 - Methylation may regulate the expression of either the maternal or paternal allele of a gene
 - Some methylation patterns are also associated to cancer 0
 - Hypermethylation and hypomethylation
 - Both due to carcinogens and toxic substances
 - Can be used to diagnose cancer
 - co.u vere supposed to be Sometimes methylation goes wrong and generation active are inactive and vice ve
- ➤ Binding proteins
 - regulate transcription by assisting or hindering the binding of Protein RNA to the promoter **3**
 - Transcription activators cause looping of DNA, which results in a shorter distance between the activator and the promoter region of the gene
 - Assist the binding of RNA polymerase
 - The *repressors* bind to segments of DNA called *silencers* preventing transcription of that segment
- > The environment of the organism
 - Recent science has shown that the environment of the organism influences 0 genes
 - The science is called *epigenetics*
 - Example: people in urban areas show expression of more respiratory genes than people from rural areas
 - Genes can be methylated or unmethylated