$$C_7H_{16} + 11O_2$$
 \longrightarrow $7CO_2 + 8H_2O_3$

$$2SO_2 + O_2$$
 \longrightarrow $2SO_3$

moles of
$$O_2 = \frac{1 \text{ mol of } O_2}{2 \text{ mol of } SO_2}$$
 3.6 mol of $SO_2 = 1.8$ moles of O_2

$$C_4H_{10} + 13/2O_2 \longrightarrow 4CO_2 + 5H_2O$$

$$2C_4H_{10} + 13O_2$$
 \rightarrow $8CO_2 + 10H_2O$

moles of
$$CO_2 = 1.25$$
 moles of C_4H_{10} $\frac{8 \text{ mol of }CO_2}{2 \text{ mol of }C_4H_{10}} = 5 \text{ moles of }CO_2$

Scenario 6: calculating limiting reactant = reactant that gives off the least amount of moles of the product

$$C_7H_{16} + 11O_2$$
 7CO₂ + 8H₂O

moles of CO_2 from X = Scenario 1*Scenario 5 = moles

from
$$O_2 = 7000 \text{ g of } O_2$$
 $\frac{1 \text{ mol of } O_2}{32.00 \text{ g of } O_2}$ $\frac{7 \text{ moles of } CO_2}{11 \text{ moles of } O_2} = 139.2 \text{ moles of } CO_2$

Scenario 1

Scenario 5

From
$$C_7H_{16}$$
= 4000 g of C_7H_{16}
$$\frac{1 \text{ mol of } C_7H_{16}}{100.2 \text{ g of } C_7H_{16}} = \frac{7 \text{ moles of } CO_2}{1 \text{ moles of } C_7H_{16}} = 279.4 \text{ moles of } CO_2$$
Scenario 1 Scenario 5

$$H_2 + Cl_2 \longrightarrow 2HCl$$

2.5* 10³ (limiting reactant because Cl₂ is in excess)

mass of HCl from
$$H_2 = 2.5*10^3$$
 g H_2 $\frac{1 \text{ mol of } H_2}{2.016 \text{ g of } H_2}$ $\frac{2 \text{ mol of HCl}}{1 \text{ mol of } H_2}$ $\frac{36.46 \text{ g of HCl}}{1 \text{ mol of HCl}}$ = 90426 g of HCl

Scientific Notation = $9.0 * 10^4$ g of HC1