
1 Vector spaces IB Linear Algebra

Proof. Let {u1, · · · ,um} be a basis for U and extend this to a basis {u1, · · · ,um,
vm+1, · · · ,vn} for V . We want to show that {vm+1 + U, · · · ,vn + U} is a basis
for V/U .

It is easy to see that this spans V/U . If v + U ∈ V/U , then we can write

v =
∑

λiui +
∑

µivi.

Then
v + U =

∑
µi(vi + U) +

∑
λi(ui + U) =

∑
µi(vi + U).

So done.
To show that they are linearly independent, suppose that∑

λi(vi + U) = 0 + U = U.

Then this requires ∑
λivi ∈ U.

Then we can write this as a linear combination of the ui’s. So∑
λivi =

∑
µjuj

for some µj . Since {u1, · · · ,um,vn+1, · · · ,vn} is a basis for V , we must have
λi = µj = 0 for all i, j. So {vi + U} is linearly independent.

1.3 Direct sums

We are going to define direct sums in many ways in order to confuse students.

Definition ((Internal) direct sum). Suppose V is a vector space over F and
U,W ⊆ V are subspaces. We say that V is the (internal) direct sum of U and
W if

(i) U +W = V

(ii) U ∩W = 0.

We write V = U ⊕W .
Equivalently, this requires that every v ∈ V can be written uniquely as u+w

with u ∈ U,w ∈W . We say that U and W are complementary subspaces of V .

You will show in the example sheets that given any subspace U ⊆ V , U must
have a complementary subspace in V .

Example. Let V = R2, and U = 〈
(

0
1

)
〉. Then 〈

(
1
1

)
〉 and 〈

(
1
0

)
〉 are both

complementary subspaces to U in V .

Definition ((External) direct sum). If U,W are vector spaces over F, the
(external) direct sum is

U ⊕W = {(u,w) : u ∈ U,w ∈W},

with addition and scalar multiplication componentwise:

(u1,w1) + (u2,w2) = (u1 + u2,w1 + w2), λ(u,w) = (λu, λw).
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2 Linear maps IB Linear Algebra

(ii) AEnIj(λ) is obtained by adding λ× column i to column j.

(iii) ATni (λ) is obtained from A by rescaling the ith column by λ.

Multiplying on the left instead of the right would result in the same operations
performed on the rows instead of the columns.

Proposition. If A ∈ Matn,m(F), then there exists invertible matrices P ∈
GLm(F), Q ∈ GLn(F) so that

Q−1AP =

(
Ir 0
0 0

)
for some 0 ≤ r ≤ min(m,n).

We are going to start with A, and then apply these operations to get it into
this form.

Proof. We claim that there are elementary matrices Em1 , · · · , Ema and Fn1 , · · · , Fnb
(these E are not necessarily the shears, but any elementary matrix) such that

Em1 · · ·Ema AFn1 · · ·Fnb =

(
Ir 0
0 0

)
This suffices since the Emi ∈ GLM (F) and Fnj ∈ GLn(F). Moreover, to prove the
claim, it suffices to find a sequence of elementary row and column operations
reducing A to this form.

If A = 0, then done. If not, there is some i, j such that Aij 6= 0. By swapping
row 1 and row i; and then column 1 and column j, we can assume A11 6= 0. By
rescaling row 1 by 1

A11
, we can further assume A11 = 1.

Now we can add −A1j times column 1 to column j for each j 6= 1, and then
add −Ai1 times row 1 to row i 6= 1. Then we now have

A =


1 0 · · · 0
0
... B
0


Now B is smaller than A. So by induction on the size of A, we can reduce B to
a matrix of the required form, so done.

It is an exercise to show that the row and column operations do not change
the row rank or column rank, and deduce that they are equal.
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4 Bilinear forms I IB Linear Algebra

Proof. We just have to compute

ψL(ei)(fj) = Aij =
(∑

Ai`η`

)
(fj).

So we get

ψL(ei) =
∑

AT`iη`.

So AT represents ψL.
We also have

ψR(fj)(ei) = Aij .

So
ψR(fj) =

∑
Akjεk.

Definition (Left and right kernel). The kernel of ψL is left kernel of ψ, while
the kernel of ψR is the right kernel of ψ.

Then by definition, v is in the left kernel if ψ(v,w) = 0 for all w ∈W .
More generally, if T ⊆ V , then we write

T⊥ = {w ∈W : ψ(t,w) = 0 for all t ∈ T}.

Similarly, if U ⊆W , then we write

⊥U = {v ∈ V : ψ(v,u) = 0 for all u ∈ U}.

In particular, V ⊥ = kerψR and ⊥W = kerψL.
If we have a non-trivial left (or right) kernel, then in some sense, some

elements in V (or W ) are “useless”, and we don’t like these.

Definition (Non-degenerate bilinear form). ψ is non-degenerate if the left and
right kernels are both trivial. We say ψ is degenerate otherwise.

Definition (Rank of bilinear form). If ψ : V → W is a bilinear form F on a
finite-dimensional vector space V , then the rank of V is the rank of any matrix
representing φ. This is well-defined since r(PTAQ) = r(A) if P and Q are
invertible.

Alternatively, it is the rank of ψL (or ψR).

Lemma. Let V and W be finite-dimensional vector spaces over F with bases
(e1, · · · , en) and (f1, · · · , fm) be their basis respectively.

Let ψ : V ×W → F be a bilinear form represented by A with respect to these
bases. Then φ is non-degenerate if and only if A is (square and) invertible. In
particular, V and W have the same dimension.

We can understand this as saying if there are too many things in V (or W ),
then some of them are bound to be useless.

Proof. Since ψR and ψL are represented by A and AT (in some order), they both
have trivial kernel if and only if n(A) = n(AT ) = 0. So we need r(A) = dimV
and r(AT ) = dimW . So we need dimV = dimW and A have full rank, i.e. the
corresponding linear map is bijective. So done.
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5 Determinants of matrices IB Linear Algebra

Lemma. If A is an upper triangular matrix, i.e.

A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann


Then

detA =

n∏
i=1

aii.

Proof. We have

detA =
∑
σ∈Sn

ε(σ)

n∏
i=1

Aiσ(i)

But Aiσ(i) = 0 whenever i > σ(i). So

n∏
i=1

Aiσ(i) = 0

if there is some i ∈ {1, · · · , n} such that i > σ(i).
However, the only permutation in which i ≤ σ(i) for all i is the identity. So

the only thing that contributes in the sum is σ = id. So

detA =

n∏
i=1

Aii.

To motivate this definition, we need a notion of volume. How can we define
volume on a vector space? It should be clear that the “volume” cannot be
uniquely determined, since it depends on what units we are using. For example,
saying the volume is “1” is meaningless unless we provide the units, e.g. cm3.
So we have an axiomatic definition for what it means for something to denote a
“volume”.

Definition (Volume form). A volume form on Fn is a function d : Fn×· · ·×Fn →
F that is

(i) Multilinear, i.e. for all i and all v1, · · · ,vi−1,vi+1, · · · ,vn ∈ Fn, we have

d(v1, · · · ,vi−1, · ,vi+1, · · · ,vn) ∈ (Fn)∗.

(ii) Alternating, i.e. if vi = vj for some i 6= j, then

d(v1, · · · ,vn) = 0.

We should think of d(v1, · · · ,vn) as the n-dimensional volume of the paral-
lelopiped spanned by v1, · · · ,vn.

We can view A ∈ Matn(F) as n-many vectors in Fn by considering its columns
A = (A(1) A(2) · · · A(n)), with A(i) ∈ Fn. Then we have

Lemma. detA is a volume form.
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5 Determinants of matrices IB Linear Algebra

σ = σ1σ2, where σ1 is a permutation of {1, · · · , k} and fixes the remaining things,
while σ2 fixes {1, · · · , k}, and permutes the remaining. Then

detX =
∑

σ=σ1σ2

ε(σ1σ2)

k∏
i=1

Xiσ1(i)

∏̀
j=1

Xk+j σ2(k+j)

=

( ∑
σ1∈Sk

ε(σ1)

k∏
i=1

Aiσ1(i)

) ∑
σ2∈S`

ε(σ2)
∏̀
j=1

Bjσ2(j)


= (detA)(detB)

Corollary.

det


A1 stuff

A2

. . .

0 An

 =

n∏
i=1

detAi
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6 Endomorphisms IB Linear Algebra

Our initial strategy is to identify basis-independent invariants for endomor-
phisms. For example, we will show that the rank, trace, determinant and
characteristic polynomial are all such invariants.

Recall that the trace of a matrix A ∈ Matn(F) is the sum of the diagonal
elements:

Definition (Trace). The trace of a matrix of A ∈ Matn(F) is defined by

trA =

n∑
i=1

Aii.

We want to show that the trace is an invariant. In fact, we will show a
stronger statement (as well as the corresponding statement for determinants):

Lemma.

(i) If A ∈ Matm,n(F) and B ∈ Matn,m(F), then

trAB = trBA.

(ii) If A,B ∈ Matn(F) are similar, then trA = trB.

(iii) If A,B ∈ Matn(F) are similar, then detA = detB.

Proof.

(i) We have

trAB =

m∑
i=1

(AB)ii =

m∑
i=1

n∑
j=1

AijBji =

n∑
j=1

m∑
i=1

BjiAij = trBA.

(ii) Suppose B = P−1AP . Then we have

trB = tr(P−1(AP )) = tr((AP )P−1) = trA.

(iii) We have

det(P−1AP ) = detP−1 detAdetP = (detP )−1 detAdetP = detA.

This allows us to define the trace and determinant of an endomorphism.

Definition (Trace and determinant of endomorphism). Let α ∈ End(V ), and A
be a matrix representing α under any basis. Then the trace of α is trα = trA,
and the determinant is detα = detA.

The lemma tells us that the determinant and trace are well-defined. We
can also define the determinant without reference to a basis, by defining more
general volume forms and define the determinant as a scaling factor.

The trace is slightly more tricky to define without basis, but in IB Analysis
II example sheet 4, you will find that it is the directional derivative of the
determinant at the origin.

To talk about the characteristic polynomial, we need to know what eigenvalues
are.
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6 Endomorphisms IB Linear Algebra

We can use the last lemma and induction to show that any non-zero f ∈ F[t]
can be written as

f = g(t)

k∏
i=1

(t− λi)ai ,

where λ1, · · · , λk are all distinct, ai > 1, and g is a polynomial with no roots in
F.

Hence we obtain the following:

Lemma. A non-zero polynomial f ∈ F[t] has at most deg f roots, counted with
multiplicity.

Corollary. Let f, g ∈ F[t] have degree < n. If there are λ1, · · · , λn distinct such
that f(λi) = g(λi) for all i, then f = g.

Proof. Given the lemma, consider f − g. This has degree less than n, and
(f − g)(λi) = 0 for i = 1, · · · , n. Since it has at least n ≥ deg(f − g) roots, we
must have f − g = 0. So f = g.

Corollary. If F is infinite, then f and g are equal if and only if they agree on
all points.

More importantly, we have the following:

Theorem (The fundamental theorem of algebra). Every non-constant polyno-
mial over C has a root in C.

We will not prove this.
We say C is an algebraically closed field.
It thus follows that every polynomial over C of degree n > 0 has precisely n

roots, counted with multiplicity, since if we write f(t) = g(t)
∏

(t − λi)ai and
g has no roots, then g is constant. So the number of roots is

∑
ai = deg f ,

counted with multiplicity.
It also follows that every polynomial in R factors into linear polynomials and

quadratic polynomials with no real roots (since complex roots of real polynomials
come in complex conjugate pairs).

6.2.2 Minimal polynomial

Notation. Given f(t) =
∑m
i=0 ait

i ∈ F[t], A ∈ Matn(F) and α ∈ End(V ), we
can write

f(A) =

m∑
i=0

aiA
i, f(α) =

m∑
i=0

aiα
i

where A0 = I and α0 = ι.

Theorem (Diagonalizability theorem). Suppose α ∈ End(V ). Then α is diago-
nalizable if and only if there exists non-zero p(t) ∈ F[t] such that p(α) = 0, and
p(t) can be factored as a product of distinct linear factors.

Proof. Suppose α is diagonalizable. Let λ1, · · · , λk be the distinct eigenvalues
of α. We have

V =

k⊕
i=1

E(λi).
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6 Endomorphisms IB Linear Algebra

We can now re-state our diagonalizability theorem.

Theorem (Diagonalizability theorem 2.0). Let α ∈ End(V ). Then α is diago-
nalizable if and only if Mα(t) is a product of its distinct linear factors.

Proof. (⇐) This follows directly from the previous diagonalizability theorem.
(⇒) Suppose α is diagonalizable. Then there is some p ∈ F[t] non-zero such

that p(α) = 0 and p is a product of distinct linear factors. Since Mα divides p,
Mα also has distinct linear factors.

Theorem. Let α, β ∈ End(V ) be both diagonalizable. Then α and β are
simultaneously diagonalizable (i.e. there exists a basis with respect to which
both are diagonal) if and only if αβ = βα.

This is important in quantum mechanics. This means that if two operators
do not commute, then they do not have a common eigenbasis. Hence we have
the uncertainty principle.

Proof. (⇒) If there exists a basis (e1, · · · , en) for V such that α and β are repre-
sented by A and B respectively, with both diagonal, then by direct computation,
AB = BA. But AB represents αβ and BA represents βα. So αβ = βα.

(⇐) Suppose αβ = βα. The idea is to consider each eigenspace of α individu-
ally, and then diagonalize β in each of the eigenspaces. Since α is diagonalizable,
we can write

V =

k⊕
i=1

Eα(λi),

where λi are the eigenvalues of V . We write Ei for Eα(λi). We want to show
that β sends Ei to itself, i.e. β(Ei) ⊆ Ei. Let v ∈ Ei. Then we want β(v) to be
in Ei. This is true since

α(β(v)) = β(α(v)) = β(λiv) = λiβ(v).

So β(v) is an eigenvector of α with eigenvalue λi.
Now we can view β|Ei

∈ End(Ei). Note that

Mβ(β|Ei
) = Mβ(β)|Ei

= 0.

Since Mβ(t) is a product of its distinct linear factors, it follows that β|Ei is
diagonalizable. So we can choose a basis Bi of eigenvectors for β|Ei . We can do
this for all i.

Then since V is a direct sum of the Ei’s, we know that B =
⋃k
i=1Bi is a

basis for V consisting of eigenvectors for both α and β. So done.

6.3 The Cayley-Hamilton theorem

We will first state the theorem, and then prove it later.
Recall that χα(t) = det(tι− α) for α ∈ End(V ). Our main theorem of the

section (as you might have guessed from the title) is

Theorem (Cayley-Hamilton theorem). Let V be a finite-dimensional vector
space and α ∈ End(V ). Then χα(α) = 0, i.e. Mα(t) | χα(t). In particular,
degMα ≤ n.
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6 Endomorphisms IB Linear Algebra

Then we get the result

(tIn −A)(Bn−1t
n−1 +Bn−2t

n−2 + · · ·+B0) = (tn + an−1t
n−1 + · · ·+ a0)In.

We would like to just throw in t = A, and get the desired result, but in all these
derivations, t is assumed to be a real number, and, tIn −A is the matrix

t− a11 a12 · · · a1n
a21 t− a22 · · · a2n
...

...
. . .

...
an1 an2 · · · t− ann


It doesn’t make sense to put our A in there.

However, what we can do is to note that since this is true for all values of t,
the coefficients on both sides must be equal. Equating coefficients in tk, we have

−AB0 = a0In

B0 −AB1 = a1In

...

Bn−2 −ABn−1 = an−1In

ABn−1 − 0 = In

We now multiply each row a suitable power of A to obtain

−AB0 = a0In

AB0 −A2B1 = a1A

...

An−1Bn−2 −AnBn−1 = an−1A
n−1

AnBn−1 − 0 = An.

Summing this up then gives χα(A) = 0.

This proof suggests that we really ought to be able to just substitute in t = α
and be done. In fact, we can do this, after we develop sufficient machinery. This
will be done in the IB Groups, Rings and Modules course.

Lemma. Let α ∈ End(V ), λ ∈ F. Then the following are equivalent:

(i) λ is an eigenvalue of α.

(ii) λ is a root of χα(t).

(iii) λ is a root of Mα(t).

Proof.

– (i) ⇔ (ii): λ is an eigenvalue of α if and only if (α − λι)(v) = 0 has a
non-trivial root, iff det(α− λι) = 0.

– (iii) ⇒ (ii): This follows from Cayley-Hamilton theorem since Mα | χα.
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6 Endomorphisms IB Linear Algebra

with λ, µ ∈ C distinct. We see that MA determines the Jordan normal form of
A, but χA does not.

Every 3× 3 matrix in Jordan normal form is one of the six types. Here λ1, λ2
and λ3 are distinct complex numbers.

Jordan normal form χA MAλ1 0 0
0 λ2 0
0 0 λ3

 (t− λ1)(t− λ2)(t− λ3) (t− λ1)(t− λ2)(t− λ3)

λ1 0 0
0 λ1 0
0 0 λ2

 (t− λ1)2(t− λ2) (t− λ1)(t− λ2)

λ1 1 0
0 λ1 0
0 0 λ2

 (t− λ1)2(t− λ2) (t− λ1)2(t− λ2)

λ1 0 0
0 λ1 0
0 0 λ1

 (t− λ1)3 (t− λ1)

λ1 1 0
0 λ1 0
0 0 λ1

 (t− λ1)3 (t− λ1)2

λ1 1 0
0 λ1 1
0 0 λ1

 (t− λ1)3 (t− λ1)3

Notice that χA and MA together determine the Jordan normal form of a 3× 3
complex matrix. We do indeed need χA in the second case, since if we are given
MA = (t− λ1)(t− λ2), we know one of the roots is double, but not which one.

In general, though, even χA and MA together does not suffice.
We now want to understand the Jordan normal blocks better. Recall the

definition

Jn(λ) =


λ 1 · · · 0

0 λ
. . .

...
...

...
. . . 1

0 0 · · · λ

 = λIn + Jn(0).

If (e1, · · · , en) is the standard basis for Cn, we have

Jn(0)(e1) = 0, Jn(0)(ei) = ei−1 for 2 ≤ i ≤ n.

Thus we know

Jn(0)k(ei) =

{
0 i ≤ k
ei−k k < i ≤ n

In other words, for k < n, we have

(Jn(λ)− λI)k = Jn(0)k =

(
0 In−k
0 0

)
.
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6 Endomorphisms IB Linear Algebra

Proof. We work blockwise for

A =


Jn1(λ1)

Jn2
(λ2)

. . .

Jnk
(λk)

 .

We have previously computed

n((Jm(λ)− λIm)r) =

{
r r ≤ m
m r > m

.

Hence we know

n((Jm(λ)− λIm)r)− n((Jm(λ)− λIm)r−1) =

{
1 r ≤ m
0 otherwise.

It is also easy to see that for µ 6= λ,

n((Jm(µ)− λIm)r) = n(Jm(µ− λ)r) = 0

Adding up for each block, for r ≥ 1, we have

n((α−λι)r)−n((α−λι)r−1) = number of Jordan blocks Jn(λ) with n ≥ r.

We can interpret this result as follows: if r ≤ m, when we take an additional

power of Jm(λ)−λIm, we get from

(
0 Im−r
0 0

)
to

(
0 Im−r−1
0 0

)
. So we kill off

one more column in the matrix, and the nullity increase by one. This happens
until (Jm(λ)− λIm)r = 0, in which case increasing the power no longer affects
the matrix. So when we look at the difference in nullity, we are counting the
number of blocks that are affected by the increase in power, which is the number
of blocks of size at least r.

We have now proved uniqueness, but existence is not yet clear. To show
this, we will reduce it to the case where there is exactly one eigenvalue. This
reduction is easy if the matrix is diagonalizable, because we can decompose the
matrix into each eigenspace and then work in the corresponding eigenspace. In
general, we need to work with “generalized eigenspaces”.

Theorem (Generalized eigenspace decomposition). Let V be a finite-dimensional
vector space C such that α ∈ End(V ). Suppose that

Mα(t) =

k∏
i=1

(t− λi)ci ,

with λ1, · · · , λk ∈ C distinct. Then

V = V1 ⊕ · · · ⊕ Vk,

where Vi = ker((α− λiι)ci) is the generalized eigenspace.

68

Preview from Notesale.co.uk

Page 68 of 96



7 Bilinear forms II IB Linear Algebra

We see that the diagonal matrix we get is not unique. We can re-scale our
basis by any constant, and get an equivalent expression.

Theorem. Let φ be a symmetric bilinear form over a complex vector space V .
Then there exists a basis (v1, · · · ,vm) for V such that φ is represented by(

Ir 0
0 0

)
with respect to this basis, where r = r(φ).

Proof. We’ve already shown that there exists a basis (e1, · · · , en) such that
φ(ei, ej) = λiδij for some λij . By reordering the ei, we can assume that
λ1, · · · , λr 6= 0 and λr+1, · · · , λn = 0.

For each 1 ≤ i ≤ r, there exists some µi such that µ2
i = λi. For r+1 ≤ r ≤ n,

we let µi = 1 (or anything non-zero). We define

vi =
ei
µi
.

Then

φ(vi,vj) =
1

µiµj
φ(ei, ej) =

{
0 i 6= j or i = j > r

1 i = j < r.

So done.

Note that it follows that for the corresponding quadratic form q, we have

q

(
n∑
i=1

aivi

)
=

r∑
i=1

a2i .

Corollary. Every symmetric A ∈ Matn(C) is congruent to a unique matrix of
the form (

Ir 0
0 0

)
.

Now this theorem is a bit too strong, and we are going to fix that next lecture,
by talking about Hermitian forms and sesquilinear forms. Before that, we do
the equivalent result for real vector spaces.

Theorem. Let φ be a symmetric bilinear form of a finite-dimensional vector
space over R. Then there exists a basis (v1, · · · ,vn) for V such that φ is
represented Ip −Iq

0

 ,

with p+ q = r(φ), p, q ≥ 0. Equivalently, the corresponding quadratic forms is
given by

q

(
n∑
i=1

aivi

)
=

p∑
i=1

a2i −
p+q∑
j=p+1

a2j .
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7 Bilinear forms II IB Linear Algebra

Definition (Signature). The signature of a bilinear form φ is the number p− q,
where p and q are as above.

Of course, we can recover p and q from the signature and the rank of φ.

Corollary. Every real symmetric matrix is congruent to precisely one matrix
of the form Ip 0 0

0 −Iq 0
0 0 0

 .

7.2 Hermitian form

The above result was nice for real vector spaces. However, if φ is a bilinear form
on a C-vector space V , then φ(iv, iv) = −φ(v,v). So there can be no good
notion of positive definiteness for complex bilinear forms. To make them work
for complex vector spaces, we need to modify the definition slightly to obtain
Hermitian forms.

Definition (Sesquilinear form). Let V,W be complex vector spaces. Then a
sesquilinear form is a function φ : V ×W → C such that

(i) φ(λv1 + µv2,w) = λ̄φ(v1,w) + µ̄φ(v2,w).

(ii) φ(v, λw1 + µw2) = λφ(v,w1) + µφ(vw2).

for all v,v1,v2 ∈ V , w,w1,w2 ∈W and λ, µ ∈ C.

Note that some people have an opposite definition, where we have linearity
in the first argument and conjugate linearity in the second.

These are called sesquilinear since “sesqui” means “one and a half”, and this
is linear in the second argument and “half linear” in the first.

Alternatively, to define a sesquilinear form, we can define a new complex
vector space V̄ structure on V by taking the same abelian group (i.e. the same
underlying set and addition), but with the scalar multiplication C × V̄ → V̄
defined as

(λ,v) 7→ λ̄v.

Then a sesquilinear form on V ×W is a bilinear form on V̄ ×W . Alternatively,
this is a linear map W → V̄ ∗.

Definition (Representation of sesquilinear form). Let V,W be finite-dimensional
complex vector spaces with basis (v1, · · · ,vn) and (w1, · · · ,wm) respectively,
and φ : V ×W → C be a sesquilinear form. Then the matrix representing φ
with respect to these bases is

Aij = φ(vi,wj).

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

As usual, this determines the whole sesquilinear form. This follows from
the analogous fact for the bilinear form on V̄ ×W → C. Let v =

∑
λivi and

W =
∑
µjwj . Then we have

φ(v,w) =
∑
i,j

λiµjφ(vi,wj) = λ†Aµ.

80

Preview from Notesale.co.uk

Page 80 of 96



8 Inner product spaces IB Linear Algebra

8.2 Gram-Schmidt orthogonalization

As mentioned, we want to make sure every vector space has an orthonormal
basis, and we can extend any orthonormal set to an orthonormal basis, at least
in the case of finite-dimensional vector spaces. The idea is to start with an
arbitrary basis, which we know exists, and produce an orthonormal basis out of
it. The way to do this is the Gram-Schmidt process.

Theorem (Gram-Schmidt process). Let V be an inner product space and
e1, e2, · · · a linearly independent set. Then we can construct an orthonormal set
v1,v2, · · · with the property that

〈v1, · · · ,vk〉 = 〈e1, · · · , ek〉

for every k.

Note that we are not requiring the set to be finite. We are just requiring it
to be countable.

Proof. We construct it iteratively, and prove this by induction on k. The base
case k = 0 is contentless.

Suppose we have already found v1, · · · ,vk that satisfies the properties. We
define

uk+1 = ek+1 −
k∑
i=1

(vi, ei+1)vi.

We want to prove that this is orthogonal to all the other vi’s for i ≤ k. We have

(vj ,uk+1) = (vj , ek+1)−
k∑
i=1

(vi, ek+1)δij = (vj , ek+1)− (vj , ek+1) = 0.

So it is orthogonal.
We want to argue that uk+1 is non-zero. Note that

〈v1, · · · ,vk,uk+1〉 = 〈v1, · · · ,vk, ek+1〉

since we can recover ek+1 from v1, · · · ,vk and uk+1 by construction. We also
know

〈v1, · · · ,vk, ek+1〉 = 〈e1, · · · , ek, ek+1〉

by assumption. We know 〈e1, · · · , ek, ek+1〉 has dimension k+ 1 since the ei are
linearly independent. So we must have uk+1 non-zero, or else 〈v1, · · · ,vk〉 will
be a set of size k spanning a space of dimension k + 1, which is clearly nonsense.

Therefore, we can define

vk+1 =
uk+1

‖uk+1‖
.

Then v1, · · · ,vk+1 is orthonormal and 〈v1, · · · ,vk+1〉 = 〈e1, · · · , ek+1〉 as re-
quired.

Corollary. If V is a finite-dimensional inner product space, then any orthonor-
mal set can be extended to an orthonormal basis.
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(ii) This is just Pythagoras’ theorem. Note that if x and y are orthogonal,
then

‖x + y‖2 = (x + y,x + y)

= (x,x) + (x,y) + (y,x) + (y.y)

= ‖x‖2 + ‖y‖2.

We apply this to our projection. For any w ∈W , we have

‖v −w‖2 = ‖v − π(v)‖2 + ‖π(v)−w‖2 ≥ ‖v − π(v)‖2

with equality if and only if ‖π(v)−w‖ = 0, i.e. π(v) = w.

8.3 Adjoints, orthogonal and unitary maps

Adjoints

Lemma. Let V and W be finite-dimensional inner product spaces and α : V →
W is a linear map. Then there exists a unique linear map α∗ : W → V such that

(αv,w) = (v, α∗w) (∗)

for all v ∈ V , w ∈W .

Proof. There are two parts. We have to prove existence and uniqueness. We’ll
first prove it concretely using matrices, and then provide a conceptual reason of
what this means.

Let (v1, · · · ,vn) and (w1, · · · ,wm) be orthonormal basis for V and W .
Suppose α is represented by A.

To show uniqueness, suppose α∗ : W → V satisfies (αv,w) = (v, α∗w) for
all v ∈ V , w ∈W , then for all i, j, by definition, we know

(vi, α
∗(wj)) = (α(vi),wj)

=

(∑
k

Akiwk,wj

)
=
∑
k

Āki(wk,wj) = Āji.

So we get

α∗(wj) =
∑
i

(vi, α
∗(wj))vi =

∑
i

Ājivi.

Hence α∗ must be represented by A†. So α∗ is unique.
To show existence, all we have to do is to show A† indeed works. Now let α∗

be represented by A†. We can compute the two sides of (∗) for arbitrary v,w.
We have (

α
(∑

λivi

)
,
∑

µjwj

)
=
∑
i,j

λ̄iµj(α(vi),wj)

=
∑
i,j

λ̄iµj

(∑
k

Akiwk,wj

)
=
∑
i,j

λ̄iĀjiµj .
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Corollary. If A,B ∈ Matn(R) are symmetric and A is positive definitive (i.e.
vTAv > 0 for all v ∈ Rn \ {0}). Then there exists an invertible matrix Q such
that QTAQ and QTBQ are both diagonal.

We can deduce similar results for complex finite-dimensional vector spaces,
with the same proofs. In particular,

Proposition.

(i) If A ∈ Matn(C) is Hermitian, then there exists a unitary matrix U ∈
Matn(C) such that

U−1AU = U†AU

is diagonal.

(ii) If ψ is a Hermitian form on a finite-dimensional complex inner product
space V , then there is an orthonormal basis for V diagonalizing ψ.

(iii) If φ, ψ are Hermitian forms on a finite-dimensional complex vector space
and φ is positive definite, then there exists a basis for which φ and ψ are
diagonalized.

(iv) Let A,B ∈ Matn(C) be Hermitian, and A positive definitive (i.e. v†Av > 0
for v ∈ V \ {0}). Then there exists some invertible Q such that Q†AQ and
Q†BQ are diagonal.

That’s all for self-adjoint matrices. How about unitary matrices?

Theorem. Let V be a finite-dimensional complex vector space and α ∈ U(V )
be unitary. Then V has an orthonormal basis of α eigenvectors.

Proof. By the fundamental theorem of algebra, there exists v ∈ V \ {0} and
λ ∈ C such that αv = λv. Now consider W = 〈v〉⊥. Then

V = W ⊥ 〈v〉.

We want to show α restricts to a (unitary) endomorphism of W . Let w ∈ W .
We need to show α(w) is orthogonal to v. We have

(αw,v) = (w, α−1v) = (w, λ−1v) = 0.

So α(w) ∈ W and α|W ∈ End(W ). Also, α|W is unitary since α is. So by
induction on dimV , W has an orthonormal basis of α eigenvectors. If we add
v/‖v‖ to this basis, we get an orthonormal basis of V itself comprised of α
eigenvectors.

This theorem and the analogous one for self-adjoint endomorphisms have a
common generalization, at least for complex inner product spaces. The key fact
that leads to the existence of an orthonormal basis of eigenvectors is that α and α∗

commute. This is clearly a necessary condition, since if α is diagonalizable, then
α∗ is diagonal in the same basis (since it is just the transpose (and conjugate)),
and hence they commute. It turns out this is also a sufficient condition, as you
will show in example sheet 4.
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