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Proof. Let {uy,--- ,u,,} be a basis for U and extend this to a basis {uy, - , U,
V41, ", Vn} for V. We want to show that {v,,41+U,---,v, + U} is a basis
for V/U.

It is easy to see that this spans V/U. If v+ U € V/U, then we can write

vV = Z /\iui + Z,U@V,;.

V+U:ZNi(Vi+U)+Z>\i(ui+U) ZZM(VZ‘—FU).

Then

So done.
To show that they are linearly independent, suppose that
> XN(vi+U)=0+U=U.

Then this requires

Z/\ivi eU.

Then we can write this as a linear combination of the u;’s. So

Z )\ivi = Z /lelj

for some pj. Since {uy,- -+, W, Vpt1,-- -, Vy} is a basis for V, we must haye K
Xi = p; =0 for all 4, j. So {v; + U} is linearly independent. CO .

Sa\e *

We are going to define direct s ﬁ) NQ&m ord anuse students.
Definition ((Inte aﬁ( Suppage ¢ pace over F and
UWw C V ‘@ac We say that @ Qernal} direct sum of U and

p(?w_v pagd®

yUunw =0.

1.3 Direct sums

We write V=U & W.
Equivalently, this requires that every v € V' can be written uniquely as u+w
with u € U,w € W. We say that U and W are complementary subspaces of V.

You will show in the example sheets that given any subspace U C V', U must
have a complementary subspace in V.

Example. Let V = R?, and U = <<?)> Then <<1>> and ((é)) are both

complementary subspaces to U in V.

Definition ((External) direct sum). If U, W are vector spaces over F, the
(external) direct sum is

UaoW={(u,w):uelweW},
with addition and scalar multiplication componentwise:

(ug,wy) + (ug,wa) = (u; + ug, w; + wa), Au,w) = (Au, \w).
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2 Linear maps IB Linear Algebra

(ii) AET;(A) is obtained by adding Ax column i to column j.
(iii) AT*() is obtained from A by rescaling the ith column by A.

Multiplying on the left instead of the right would result in the same operations
performed on the rows instead of the columns.

Proposition. If A € Mat, ,,(F), then there exists invertible matrices P €
GL,,(F), Q € GL,(F) so that
I, 0
1
@ ar= (G 1)

for some 0 < r < min(m, n).

We are going to start with A, and then apply these operations to get it into
this form.

Proof. We claim that there are elementary matrices E7*,--- , EJ* and F*,--- , F}}
(these E are not necessarily the shears, but any elementary matrix) such that

This suffices since the £} € GLy(F) and F}* € GLy,( €0 %@ b}yk
claim, it suffices to find a sequence of elementary ro aéwv erations
reducing A to this form.
If A =0, then done. If not, there is & that A% 0. By swapping
lumn 7,

row 1 and row ; and t en c@ me Ay; # 0. By
rcscahng row 1b her ass ¥

1] tlmes colu 1 n j for each j # 1, and then

E7" - ETAF! .. F = (IOT 8)

Now
s TOW 1 to r e we now have

prev S

Now B is smaller than A. So by induction on the size of A, we can reduce B to
a matrix of the required form, so done. O

It is an exercise to show that the row and column operations do not change
the row rank or column rank, and deduce that they are equal.
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4 Bilinear forms I IB Linear Algebra

Proof. We just have to compute

Yr(ei)(f; = (Z Azem)
i) = Z Afinne.

So we get

So AT represents vy.
We also have

Yr(f;)(e:) = Aij.

fj):ZAkjgk' O

Definition (Left and right kernel). The kernel of ¢y, is left kernel of 1, while
the kernel of g is the right kernel of 1.

So

Then by definition, v is in the left kernel if (v, w) = 0 for all w € W.
More generally, if T C V', then we write

L=—{weW:t,w)=0foralteT}
Similarly, if U C W, then we write 0 K
J‘U{VEV:@Z;(vu)OforalluEﬁ'\ C

In particular, V+ = kertr and lW

If we have a non- tr1v1al l rnel he me sense, some
elements in V' (or W and we don

Definit, ‘QW e erate b111 1s non-degenerate if the left and
Mn IS"are bot g degenemte otherwise.
r form)

P geﬁnltlon (Rank o hnea . If ¢ : V — W is a bilinear form F on a
finite- d1mens1onal vector space V, then the rank of V is the rank of any matrix
representing ¢. This is well-defined since r(PTAQ) = r(A) if P and Q are
invertible.

Alternatively, it is the rank of 1, (or ¥g).

Lemma. Let V and W be finite-dimensional vector spaces over F with bases
(e1, -+ ,e,) and (f1,--- ,f,,) be their basis respectively.

Let ¢ : V. x W — F be a bilinear form represented by A with respect to these
bases. Then ¢ is non-degenerate if and only if A is (square and) invertible. In
particular, V' and W have the same dimension.

We can understand this as saying if there are too many things in V' (or W),
then some of them are bound to be useless.

Proof. Since g and v, are represented by A and A7 (in some order), they both
have trivial kernel if and only if n(A) = n(AT) = 0. So we need r(A) = dim V
and r(AT) = dim W. So we need dimV = dim W and A have full rank, i.e. the
corresponding linear map is bijective. So done. O
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5 Determinants of matrices IB Linear Algebra

Lemma. If A is an upper triangular matrix, i.e.

aix aiz -+ Qin
0 a2 - a

A= .
0 0 Ann

Then

n
det A = H A
i=1
Proof. We have

det A = Z E(O') ﬁ AZU(Z)
i=1

O’ESn

But A;;) = 0 whenever i > o(i). So
H Ay =0
i=1

if there is some ¢ € {1 n} such that ¢ > o(4). K
However, the only permutation in which ¢ < o(7) for all 7 is the i r@ M
the only thing that contributes in the sum is ¢ =id. So \

det A ﬂ@tes O

To motlvat (&ﬁ 1tQ we need KZ;@ lume How can we define
r

that the “volume” cannot be

volu Space‘7 It S
Y w&ztermmed on What units we are using. For example,
PLEN P s
atic

ing the volume is Mingless unless we provide the units, e.g. cm®.
So we have an axiom deﬁmtlon for what it means for something to denote a
“volume”.

Definition (Volume form). A volume form on F™ is a function d : F" x- - - xF™ —
F that is

(i) Multilinear, i.e. for all ¢ and all vy, ,v;_1,v;y1, -+, Vv, € F" we have
d(Vl, ety Vi1, 5, Vi1, ;Vn) € (]Fn)*
(ii) Alternating, i.e. if v, = v; for some ¢ # j, then

d(vy,--,vy) =0.

We should think of d(vy,---,v,) as the n-dimensional volume of the paral-
lelopiped spanned by vi,--- ,v,.

We can view A € Mat,, (F) as n-many vectors in F” by considering its columns
A= (AD A® ... AM) with A® € F*. Then we have

Lemma. det A is a volume form.
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5 Determinants of matrices IB Linear Algebra

o0 = 0103, where 01 is a permutation of {1,--- , k} and fixes the remaining things,
while o9 fixes {1,--- ,k}, and permutes the remaining. Then

k L
det X = > £(0102) [ [ Xiowii) [ [ Xbts oatioss)

o=0102 i=1 j=1
4

= < Z 6(01)HAigl(i)) Z E(UQ)HBjU-Q(j)

o1E€Sk i=1 o2E€Sy j=1
= (det A)(det B)

O
Corollary.
Ay stuff
Ao n
det ) = H det A;
: i=1
0 Ay,
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6 Endomorphisms IB Linear Algebra

Our initial strategy is to identify basis-independent invariants for endomor-
phisms. For example, we will show that the rank, trace, determinant and
characteristic polynomial are all such invariants.

Recall that the trace of a matrix A € Mat,, (F) is the sum of the diagonal
elements:

Definition (Trace). The trace of a matrix of A € Mat,,(F) is defined by

n
i=1
We want to show that the trace is an invariant. In fact, we will show a
stronger statement (as well as the corresponding statement for determinants):
Lemma.
(i) If A € Mat,, ,(F) and B € Mat,, ,,(F), then

tr AB = tr BA.

(ii) If A, B € Mat,,(IF) are similar, then tr A = tr B.
(iii) If A, B € Mat,,(FF) are similar, then det A = det B. K

Proof. \ CO

(i) We have

tr AB = %%1@ &ﬁ;ﬂ &g@ = tr BA.

P ( @\,p}o@B P= ee have

tr P)) =tr((AP)P™!) = tr A.
(iii) We have

det(P7'AP) = det P~ ' det Adet P = (det P) ' det Adet P = det A. [

This allows us to define the trace and determinant of an endomorphism.

Definition (Trace and determinant of endomorphism). Let oo € End(V'), and A
be a matrix representing o under any basis. Then the trace of « is tra =tr A,
and the determinant is det a = det A.

The lemma tells us that the determinant and trace are well-defined. We
can also define the determinant without reference to a basis, by defining more
general volume forms and define the determinant as a scaling factor.

The trace is slightly more tricky to define without basis, but in IB Analysis
IT example sheet 4, you will find that it is the directional derivative of the
determinant at the origin.

To talk about the characteristic polynomial, we need to know what eigenvalues
are.
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6 Endomorphisms IB Linear Algebra

We can use the last lemma and induction to show that any non-zero f € FJ¢]
can be written as A
-

i=1
where A1, - -, A; are all distinct, a; > 1, and g is a polynomial with no roots in
F.
Hence we obtain the following:

Lemma. A non-zero polynomial f € F[t] has at most deg f roots, counted with
multiplicity.

Corollary. Let f, g € F[t] have degree < n. If there are Ay, - - , A, distinct such
that f(A;) = g(\;) for all ¢, then f =g.

Proof. Given the lemma, consider f — g. This has degree less than n, and
(f—g9) (M) =0fori=1,--- ,n. Since it has at least n > deg(f — g) roots, we
must have f —g=0. So f=g. O

Corollary. If F is infinite, then f and g are equal if and only if they agree on
all points.

More importantly, we have the following:

Theorem (The fundamental theorem of algebra). Every n(ﬁ const@@ynv

mial over C has a root in C.
f

We will not prove this.
We say C is an algebmzcall

It thus follows th Q i 1 over (C of e %6} has premsely n
roots, counteW T ity, sinc wr Ai)% and
mb

ng is consta er of roots is Zal = deg f,

&IV
@g&t multipld 97
P also follows tha omial in R factors into linear polynomials and

quadratic polynomials Wlth no real roots (since complex roots of real polynomials
come in complex conjugate pairs).

6.2.2 Minimal polynomial

Notation. Given f(t) = Y i" a;t' € F[t], A € Mat,(F) and a € End(V), we

can write . .
A) = ZaiAi, fla)= Zaiai
i=0 i=0

where A% =T and a® = ..

Theorem (Diagonalizability theorem). Suppose a € End(V'). Then « is diago-
nalizable if and only if there exists non-zero p(t) € F[t] such that p(«) = 0, and
p(t) can be factored as a product of distinct linear factors.

Proof. Suppose « is diagonalizable. Let A1, -, A\x be the distinct eigenvalues
of a. We have X
V= EN)
i=1



6 Endomorphisms IB Linear Algebra

We can now re-state our diagonalizability theorem.

Theorem (Diagonalizability theorem 2.0). Let o € End(V). Then « is diago-
nalizable if and only if M, (t) is a product of its distinct linear factors.

Proof. (<) This follows directly from the previous diagonalizability theorem.
(=) Suppose « is diagonalizable. Then there is some p € F[t] non-zero such

that p(a) = 0 and p is a product of distinct linear factors. Since M, divides p,

M., also has distinct linear factors. O

Theorem. Let o, € End(V) be both diagonalizable. Then « and S are
simultaneously diagonalizable (i.e. there exists a basis with respect to which
both are diagonal) if and only if a8 = fa.

This is important in quantum mechanics. This means that if two operators
do not commute, then they do not have a common eigenbasis. Hence we have
the uncertainty principle.

Proof. (=) If there exists a basis (e, - ,e,) for V such that o and 8 are repre-
sented by A and B respectively, with both diagonal, then by direct computation,
AB = BA. But AB represents a8 and BA represents Sa. So aff = Ba.

(<) Suppose a5 = Ba. The idea is to consider each eigenspace of « individu-
ally, and then diagonalize g in each of the eigenspaces. Since « is diagonalizable K

we can write o @ E \e CO

where \; are the eigenvalues o ‘% for E e want to show
that 3 sends E; to its ﬁ( G Let v Want B(v) to be

in Ej. ThlS is {r

P(e\,\ ?3@@6 = XiB(v).

is an eigenvector of a with eigenvalue A;.
Now we can view (|g, € End(E;). Note that

Mpg(BlE,) = Mg(B)|E, = 0.

Since Mpg(t) is a product of its distinct linear factors, it follows that §|g, is
diagonalizable. So we can choose a basis B; of eigenvectors for 5|g,. We can do
this for all 7.

Then since V' is a direct sum of the E;’s, we know that B = Ule B;is a
basis for V' consisting of eigenvectors for both o and 3. So done. O

6.3 The Cayley-Hamilton theorem

We will first state the theorem, and then prove it later.
Recall that xo(t) = det(tt — «) for @ € End(V). Our main theorem of the
section (as you might have guessed from the title) is

Theorem (Cayley-Hamilton theorem). Let V' be a finite-dimensional vector
space and a € End(V). Then x,(o) = 0, i.e. My(t) | xa(f). In particular,
deg M, < n.
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6 Endomorphisms IB Linear Algebra

Then we get the result
(tI, — A) (B 1 t" ' 4+ By ot" 2 4+ 4+ By) = (t" + an_1t"" 4+ +ag)l,.

We would like to just throw in ¢ = A, and get the desired result, but in all these
derivations, t is assumed to be a real number, and, ¢tI,, — A is the matrix

t—an a2 e A1n
a21 t—az --- Q2n
an1 an2 Tt t— Anpn

It doesn’t make sense to put our A in there.
However, what we can do is to note that since this is true for all values of ¢,
the coefficients on both sides must be equal. Equating coefficients in ¥, we have

—ABO = a()In
Bo — AB1 = Ch]n

B2 — Aanl =apn_11ly K
AByy—0=1, cO- U
We now multiply each row a suitable power of A é%a\e

oW\ X5 96
P(e\,\e\N gﬁg A”B (12@” LA

A"B,_1—0=A".
Summing this up then gives x,(A) = 0. O

This proof suggests that we really ought to be able to just substitute in ¢t = «
and be done. In fact, we can do this, after we develop sufficient machinery. This
will be done in the IB Groups, Rings and Modules course.

Lemma. Let a € End(V), A € F. Then the following are equivalent:
(i) X is an eigenvalue of «.
(ii) A is a root of x.(t).
(iii) A is a root of M, (t).
Proof.

— (i) & (ii): A is an eigenvalue of « if and only if (o — A¢)(v) = 0 has a
non-trivial root, iff det(ax — A¢) = 0.

— (iii) = (ii): This follows from Cayley-Hamilton theorem since My, | xaq-
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6 Endomorphisms IB Linear Algebra

with A, p € C distinct. We see that M4 determines the Jordan normal form of
A, but x4 does not.

Every 3 x 3 matrix in Jordan normal form is one of the six types. Here A1, Ao
and A3 are distinct complex numbers.

Jordan normal form XA My
A 000
0 X O (t—=A){E =)t —X3) (t—=A)(tE—A2)(t— A3)
0 0 X3
A 000
0 A 0 (t =)t — A2) (t=A)(t—X2)
0 0 X
A 10
0 X\ 0 (t—A1)2(t = Na) (t—X1)%(t — X2)
0 0 X
A0 0
0 X\ O (t—A1)3 (t— A1)

Notice th'a er dete @ n normal form of a 3 x 3

com do 1ndee second case, since if we are given

v/é A1 t — 3@ of the roots is double, but not which one.
In general, thoug even x4 and M4 together does not suffice.

We now want to understand the Jordan normal blocks better. Recall the
definition

A1 .- 0
AT
Loy =27 = AL + J(0).
S |
0 0 --- )\
If (e1,--- ,ey) is the standard basis for C", we have

Jn(0)(e1) =0, J,(0)(e;) =e;—1 for 2 <i<n.
Thus we know
0 1<k
e k<i<n

Tn(0)"(e;) = {

In other words, for k < n, we have
() = A0 = 10 = (5.
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6 Endomorphisms IB Linear Algebra

Proof. We work blockwise for

Jnl ()‘1)
‘]nz (/\ )
A= ’
Jnk ()‘k)
We have previously computed
. r r<<m
n(Jm(N) = M)") = {m e

Hence we know

1 »r<m

0 otherwise.

(T (A) = An)") = (T (X) = Mm)"™1) = {

It is also easy to see that for p # A,

n((Jm (1) = AMm)") = n(Jm(p—A)") =0

Adding up for each block, for » > 1, we have K
n((a—A)")—n((a—M)""") = number of Jordan blg kakewtgb >,
We can 1nterpret this result as foll en we take an additional
power of J,, ﬁ to . So we kill off
One mores co a T1X, and t se by one This happens

untj J = 0 in ablng the power no longer affects
x So Whe dlfference in nullity, we are counting the
umber of blocks th by the increase in power, which is the number

of blocks of size at least .

We have now proved uniqueness, but existence is not yet clear. To show
this, we will reduce it to the case where there is exactly one eigenvalue. This
reduction is easy if the matrix is diagonalizable, because we can decompose the
matrix into each eigenspace and then work in the corresponding eigenspace. In
general, we need to work with “generalized eigenspaces”.

Theorem (Generalized eigenspace decomposition). Let V' be a finite-dimensional
vector space C such that o € End(V). Suppose that

k
Mo (t) = T ]t =207,
i=1
with A1, .-+, A\ € C distinct. Then
V=Vvige- - &V,

where V; = ker((a — A\;¢)%) is the generalized eigenspace.
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7 Bilinear forms IT IB Linear Algebra

We see that the diagonal matrix we get is not unique. We can re-scale our
basis by any constant, and get an equivalent expression.

Theorem. Let ¢ be a symmetric bilinear form over a complex vector space V.
Then there exists a basis (vy,- -, Vy,) for V such that ¢ is represented by

I. 0
0 0
with respect to this basis, where r = r(¢).

Proof. We've already shown that there exists a basis (e1,--- ,e,) such that
o(e;,ej) = Nid;; for some A;;. By reordering the e;, we can assume that
AL,y A F0and Ay, -0, A = 0.

For each 1 < i < r, there exists some pu; such that ,u? =N Forr4+1<r<n,
we let g; = 1 (or anything non-zero). We define

€;
V; = —.
Hi
Then
1 0 i£jori=j>r
p(vi,vj) = ——d(ei, e;) = { 0 \(
o L i=j<r u
So done. 0 O

Note that it follows that for the co§ 6(1‘@%&\“111 q, we have
£(of) =S5t 9

P f \d ‘.@very sw%@@a‘o C) is congruent to a unique matrix of
(6 0)

Now this theorem is a bit too strong, and we are going to fix that next lecture,
by talking about Hermitian forms and sesquilinear forms. Before that, we do
the equivalent result for real vector spaces.

Theorem. Let ¢ be a symmetric bilinear form of a finite-dimensional vector
space over R. Then there exists a basis (vi,---,v,) for V such that ¢ is
represented
Ip
-1, 7
0

with p 4+ ¢ = r(¢), p, ¢ > 0. Equivalently, the corresponding quadratic forms is

given by
n p+q
Q<Zaivi> Za - Z a
i=1

j=p+1

7
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Definition (Signature). The signature of a bilinear form ¢ is the number p — ¢,
where p and ¢ are as above.

Of course, we can recover p and ¢ from the signature and the rank of ¢.

Corollary. Every real symmetric matrix is congruent to precisely one matrix
of the form

I, 0 0
0 —I, 0
0 0 0

7.2 Hermitian form

The above result was nice for real vector spaces. However, if ¢ is a bilinear form
on a C-vector space V, then ¢(iv,iv) = —¢(v,v). So there can be no good
notion of positive definiteness for complex bilinear forms. To make them work
for complex vector spaces, we need to modify the definition slightly to obtain
Hermitian forms.

Definition (Sesquilinear form). Let V, W be complex vector spaces. Then a
sesquilinear form is a function ¢ : V. x W — C such that

(i) ¢(AVL + pva, W) = Ap(v1, W) + fip(V2, W).
(i) @(v, AWy + pwa) = AP(v, W1) + pd(vwa). \ CO

for all v,vy,vo € V, w,wi,wo € W and A ,uG(C
Note that some people have an op n wher we have linearity
in the first argument and conj n the

These are called s 11 sthce “ses { a half”, and this
is linear n ument and (@ he first.

we can define a new complex

XL o} deﬁne a
ace V strucP @@ ing the same abelian group (i.e. the same
161

underlying set and ut with the scalar multiplication C x V — V
defined as -
(A, V) = Av.

Then a sesquilinear form on V' x W is a bilinear form on V x W. Alternatively,
this is a linear map W — V™.

Definition (Representation of sesquilinear form). Let V, W be finite-dimensional
complex vector spaces with basis (vq,---,v,) and (wq,- -, w,,) respectively,
and ¢ : V x W — C be a sesquilinear form. Then the matrix representing ¢
with respect to these bases is

Aij = d(vi, wj).
for1<i<n,1<j<m.

As usual, this determines the whole sesquilinear form. This follows from
the analogous fact for the bilinear form on V' x W — C. Let v = Y A;v; and
W =" pjw;. Then we have

o(v,w) = inujqb(vi,wj) =\ Ap.

.3
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8 Inner product spaces IB Linear Algebra

8.2 Gram-Schmidt orthogonalization

As mentioned, we want to make sure every vector space has an orthonormal
basis, and we can extend any orthonormal set to an orthonormal basis, at least
in the case of finite-dimensional vector spaces. The idea is to start with an
arbitrary basis, which we know exists, and produce an orthonormal basis out of
it. The way to do this is the Gram-Schmidt process.

Theorem (Gram-Schmidt process). Let V' be an inner product space and
eq,es,--- a linearly independent set. Then we can construct an orthonormal set
V1, Vs, -+ with the property that

<V17"' 7vk> = <ely"' 7ek>
for every k.

Note that we are not requiring the set to be finite. We are just requiring it
to be countable.

Proof. We construct it iteratively, and prove this by induction on k. The base
case k = 0 is contentless.
Suppose we have already found vy, --- , vy that satisfies the properties. We

define ) \(
W1 = €pp1 — D _(Vir€i1)Vi. \e C

We want to prove that this is 01"thogouﬁéﬁ”@$vz s for ¢ < k. We have
(vjs Uk+1 \N7 %{ %gl\’e%% 0&1%9@;‘,@#1) =

?% ogonal ag
e want to argue s non-zero. Note that

v17 o vk7uk+1> = <V17 Vi, ek+1>
since we can recover epy1 from vy, -, v and ugyq by construction. We also
know

<V15 Vi, ek+1> = <e1’ e 7ekyek+1>
by assumption. We know (e1, - - , e, eg+1) has dimension k 4 1 since the e; are
linearly independent. So we must have uj41 non-zero, or else (vq,- -, vy) will

be a set of size k spanning a space of dimension k + 1, which is clearly nonsense.
Therefore, we can define

Uk+1
Vil = .
[Ersy
Then vy, -+, V41 is orthonormal and (vq,--+,Vi41) = (€1, -+ ,€x41) as re-
quired. O

Corollary. If V is a finite-dimensional inner product space, then any orthonor-
mal set can be extended to an orthonormal basis.
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8 Inner product spaces IB Linear Algebra

(ii) This is just Pythagoras’ theorem. Note that if x and y are orthogonal,
then

Ix+yll* = (x+y,x+y)
= (xx)+xy)+ (%) + )
= [Ix]1* + lly[>.
We apply this to our projection. For any w € W, we have
v —w|* = v -7+ |7(v) = w|* > v = =(v)|®

with equality if and only if ||7(v) — w| =0, i.e. 7(v) = w. O

8.3 Adjoints, orthogonal and unitary maps
Adjoints

Lemma. Let V and W be finite-dimensional inner product spaces and o : V' —
W is a linear map. Then there exists a unique linear map o* : W — V such that

(av,w) = (v,a"w) (*)
forallveV, weW.

Proof. There are two parts. We have to prove existence and umqueness Wegll
first prove it concretely using matrices, and then provide a ¢ nce tu
what this means. ‘

Let (vq, -+ ,vy) and (wq, -+, wy,) be or @
Suppose « is represented by A

To show uniqueness, su m satis es%/@ (v,a*w) for
alveV,welW, thﬁ @ ydeﬁg|\0é§<
evieW g
P ( (Z Akzwka“/])

= E Api(wi, wj) = Aji.
k

1s for V and W.

So we get

a*(wj) = Z(Vz’a o (wj))vi = Z Ajivi.

i
Hence a* must be represented by Af. So o* is unique.
To show existence, all we have to do is to show Af indeed works. Now let o*
be represented by Af. We can compute the two sides of (x) for arbitrary v, w.

We have
(a (Z )\ivi) ,Z,ujwj> = Z S\iﬂj(a(vi)’wj)

= Z S\i,uj (Z Akiwk, Wj)
1,7 k
1,7
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8 Inner product spaces IB Linear Algebra

Corollary. If A, B € Mat,,(R) are symmetric and A is positive definitive (i.e.
vI'Av > 0 for all v.€ R™\ {0}). Then there exists an invertible matrix @ such
that QT AQ and Q7 BQ are both diagonal.

We can deduce similar results for complex finite-dimensional vector spaces,
with the same proofs. In particular,

Proposition.

(i) If A € Mat,(C) is Hermitian, then there exists a unitary matrix U €
Mat,, (C) such that
UT'AU = UTAU

is diagonal.

(ii) If ¢ is a Hermitian form on a finite-dimensional complex inner product
space V, then there is an orthonormal basis for V' diagonalizing ).

(iii) If ¢,4 are Hermitian forms on a finite-dimensional complex vector space
and ¢ is positive definite, then there exists a basis for which ¢ and 1 are
diagonalized.

(iv) Let A, B € Mat,,(C) be Hermitian, and A positive definitive (i.e. viAv > O
for v.€ V'\ {0}). Then there exists some invertible @) such that QTA a d
QT BQ are diagonal.

That’s all for self-adjoint matrices. How a &e %@aeﬁ

Theorem. Let V be a finite-dimensi X vector eand a € U(V)

be unitary. Then V X ﬁ m basis of « S@

Proof. B @W al theorem %ra@e e ex1sts v € V\ {0} and
P ()\ éﬁ\{,x Av. Ng.;el Then

We want to show « restricts to a (unitary) endomorphism of W. Let w € W.
We need to show «(w) is orthogonal to v. We have

(aw,v) = (w,a"'v) = (w,A"'v) = 0.

So a(w) € W and a|w € End(W). Also, alw is unitary since « is. So by
induction on dim V', W has an orthonormal basis of « eigenvectors. If we add
v/||v] to this basis, we get an orthonormal basis of V itself comprised of «
eigenvectors. O

This theorem and the analogous one for self-adjoint endomorphisms have a
common generalization, at least for complex inner product spaces. The key fact
that leads to the existence of an orthonormal basis of eigenvectors is that o and o*
commute. This is clearly a necessary condition, since if « is diagonalizable, then
a* is diagonal in the same basis (since it is just the transpose (and conjugate)),
and hence they commute. It turns out this is also a sufficient condition, as you
will show in example sheet 4.
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