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This is sort of a “uniqueness statement” for a lift. If we know a point in the
lift, then we know the whole path. This is since once we’ve decided our starting
point, i.e. which “copy” of X we work in, the rest of f̃ has to follow what f does.

Proof. First we show it is open. Let y be such that f̃1(y) = f̃2(y). Then
there is an evenly covered open neighbourhood U ⊆ X of f(y). Let Ũ be
such that f̃1(y) ∈ Ũ , p(Ũ) = U and p|Ũ : Ũ → U is a homeomorphism. Let

V = f̃−1
1 (Ũ) ∩ f̃−1

2 (Ũ). We will show that f̃1 = f̃2 on V .
Indeed, by construction

p|Ũ ◦ f̃1|V = p|Ũ ◦ f̃2|V .

Since p|Ũ is a homeomorphism, it follows that

f̃1|V = f̃2|V .

Now we show S is closed. Suppose not. Then there is some y ∈ S̄ \S. So f̃1(y) 6=
f̃2(y). Let U be an evenly covered neighbourhood of f(y). Let p−1(U) =

∐
Uα.

Let f̃1(y) ∈ Uβ and f̃2(y) ∈ Uγ , where β 6= γ. Then V = f̃−1
1 (Uβ) ∩ f̃−1

2 (Uγ) is
an open neighbourhood of y, and hence intersects S by definition of closure. So
there is some x ∈ V such that f̃1(x) = f̃2(x). But f̃1(x) ∈ Uβ and f̃2(x) ∈ Uγ ,
and hence Uβ and Uγ have a non-trivial intersection. This is a contradiction. So
S is closed.

We just had a uniqueness statement. How about existence? Given a map,
is there guarantee that we can lift it to something? Moreover, if I have fixed a
“copy” of X I like, can I also lift my map to that copy? We will later come up
with a general criterion for when lifts exist. However, it turns out homotopies
can always be lifted.

Lemma (Homotopy lifting lemma). Let p : X̃ → X be a covering space,
H : Y × I → X be a homotopy from f0 to f1. Let f̃0 be a lift of f0. Then there
exists a unique homotopy H̃ : Y × I → X̃ such that

(i) H̃( · , 0) = f̃0; and

(ii) H̃ is a lift of H, i.e. p ◦ H̃ = H.

This lemma might be difficult to comprehend at first. We can look at the
special case where Y = ∗. Then a homotopy is just a path. So the lemma
specializes to

Lemma (Path lifting lemma). Let p : X̃ → X be a covering space, γ : I → X a
path, and x̃0 ∈ X̃ such that p(x̃0) = x0 = γ(0). Then there exists a unique path
γ̃ : I → X̃ such that

(i) γ̃(0) = x̃0; and

(ii) γ̃ is a lift of γ, i.e. p ◦ γ̃ = γ.

This is exactly the picture we were drawing before. We just have to start
at a point x̃0, and then everything is determined because locally, everything
upstairs in X̃ is just like X. Note that we have already proved uniqueness. So
we just need to prove existence.
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3 Covering spaces II Algebraic Topology

Note that if we cover the words “as paths” and just talk about homotopies,
then this is just the homotopy lifting lemma. So we can view this as a stronger
form of the homotopy lifting lemma.

Proof. The homotopy lifting lemma gives us an H̃, a lift of H with H̃( · , 0) = γ̃.

γ

γ′

cx0
cx1H

lift

γ̃

γ̃′

cx̃0
cx̃1H̃

In this diagram, we by assumption know the bottom of the H̃ square is γ̃. To
show that this is a path homotopy from γ̃ to γ̃′, we need to show that the other
edges are cx̃0

, cx̃1
and γ̃′ respectively.

Now H̃( · , 1) is a lift of H( · , 1) = γ′, starting at x̃0. Since lifts are unique,
we must have H̃( · , 1) = γ̃′. So this is indeed a homotopy between γ̃ and γ̃′.
Now we need to check that this is a homotopy of paths.

We know that H̃(0, · ) is a lift of H(0, · ) = cx0
. We are aware of one lift of

cx0
, namely cx̃0

. By uniqueness of lifts, we must have H̃(0, · ) = cx̃0
. Similarly,

H̃(1, · ) = cx̃1
. So this is a homotopy of paths.

So far, our picture of covering spaces is like this:

x0 x1

Except. . . is it? Is it possible that we have four copies of x0 but just three copies
of x1? This is obviously possible if X is not path connected — the component
containing x0 and the one containing x1 are completely unrelated. But what if
X is path connected?

Corollary. If X is a path connected space, x0, x1 ∈ X, then there is a bijection
p−1(x0)→ p−1(x1).

Proof. Let γ : x0  x1 be a path. We want to use this to construct a bijection
between each preimage of x0 and each preimage of x1. The obvious thing to do
is to use lifts of the path γ.
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ũ2

−2

−1

0

1

2 R

p

S1u2

Let ũn : I → R be defined by t 7→ nt, and let un = p ◦ ũn. Since R is simply
connected, there is a unique homotopy class between any two points. So for any
[γ] ∈ π1(S1, 1), if γ̃ is the lift to R at 0 and γ̃(1) = n, then γ̃ ' ũn as paths. So
[γ] = [un].

To show that this has the right group operation, we can easily see that
ũm · un = ũm+n, since we are just moving by n+m in both cases. Therefore

`([um][un]) = `([um · um]) = m+ n = `([um+n]).

So ` is a group isomorphism.

What have we done? In general, we might be given a horrible, crazy loop
in S1. It would be rather difficult to work with it directly in S1. So we pull it
up to the universal covering R. Since R is nice and simply connected, we can
easily produce a homotopy that “straightens out” the path. We then project
this homotopy down to S1, to get a homotopy from γ to un.

It is indeed possible to produce a homotopy directly inside S1 from each loop
to some un, but that would be tedious work that involves messing with a lot of
algebra and weird, convoluted formulas.

With the fundamental group of the circle, we do many things. An immediate
application is that we can properly define the “winding number” of a closed
curve. Since C \ {0} is homotopy equivalent to S1, its fundamental group is Z
as well. Any closed curve S1 → C \ {0} thus induces a group homomorphism
Z→ Z. Any such group homomorphism must be of the form t 7→ nt, and the
winding number is given by n. If we stare at it long enough, it is clear that this
is exactly the number of times the curve winds around the origin.

Also, we have the following classic application:

Theorem (Brouwer’s fixed point theorem). Let D2 = {(x, y) ∈ R2 : x2+y2 ≤ 1}
be the unit disk. If f : D2 → D2 is continuous, then there is some x ∈ D2 such
that f(x) = x.

Proof. Suppose not. So x 6= f(x) for all x ∈ D2.
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3 Covering spaces II Algebraic Topology

Then what does it feel like to live in the torus? If you live in a torus and look
around, you don’t see a boundary. The space just extends indefinitely for ever,
somewhat like R2. The difference is that in the torus, you aren’t actually seeing
free space out there, but just seeing copies of the same space over and over again.
If you live inside the square, the universe actually looks like this:

As we said, this looks somewhat likes R2, but we know that this is not R2,
since we can see some symmetry in this space. Whenever we move one unit
horizontally or vertically, we get back to “the same place”. In fact, we can move
horizontally by n units and vertically by m units, for any n,m ∈ Z, and still get
back to the same place. This space has a huge translation symmetry. What is
this symmetry? It is exactly Z× Z.

We see that if we live inside the torus S1 × S1, it feels like we are actually
living in the universal covering space R× R, except that we have an additional
symmetry given by the fundamental group Z× Z.

Hopefully, you are convinced that universal covers are nice. We would like to
say that universal covers always exist. However, this is not always true.

Firstly, we should think — what would having a universal cover imply?
Suppose X has a universal cover X̃. Pick any point x0 ∈ X, and pick an
evenly covered neighbourhood U in X. This lifts to some Ũ ⊆ X̃. If we draw a
teeny-tiny loop γ around x0 inside U , we can lift this γ to γ̃ in Ũ . But we know
that X̃ is simply connected. So γ̃ is homotopic to the constant path. Hence γ
is also homotopic to the constant path. So all loops (contained in U) at x0 are
homotopic to the constant path.

It seems like for every x0 ∈ X, there is some neighbourhood of x0 that is
simply connected. Except that’s not what we just showed above. The homotopy
from γ̃ to the constant path is a homotopy in X̃, and can pass through anything
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3 Covering spaces II Algebraic Topology

Proof. Since X is a path connected, locally path connected and semi-locally
simply connected space, let X̄ be a universal covering. We have an intermediate
group H such that π1(X̃, x̃0) = 1 ≤ H ≤ π1(X,x0). How can we obtain a
corresponding covering space?

Note that if we have X̄ and we want to recover X, we can quotient X̄ by the
action of π1(X,x0). Since π1(X,x0) acts on X̄, so does H ≤ π1(X,x0). Now we
can define our covering space by taking quotients. We define ∼H on X̄ to be
the orbit relation for the action of H, i.e. x̃ ∼H ỹ if there is some h ∈ H such
that ỹ = hx̃. We then let X̃ be the quotient space X̄/∼H .

We can now do the messy algebra to show that this is the covering space we
want.

We have just showed that every subgroup comes from some covering space,
i.e. the map from the set of covering spaces to the subgroups of π1 is surjective.
Now we want to prove injectivity. To do so, we need a generalization of the
homotopy lifting lemma.

Suppose we have path-connected spaces (Y, y0), (X,x0) and (X̃, x̃0), with
f : (Y, y0) → (X,x0) a continuous map, p : (X̃, x̃0) → (X,x0) a covering map.
When does a lift of f to f̃ : (Y, y0)→ (X̃, x̃0) exist? The answer is given by the
lifting criterion.

Lemma (Lifting criterion). Let p : (X̃, x̃0)→ (X,x0) be a covering map of path-
connected based spaces, and (Y, y0) a path-connected, locally path connected
based space. If f : (Y, y0)→ (X,x0) is a continuous map, then there is a (unique)
lift f̃ : (Y, y0)→ (X̃, x̃0) such that the diagram below commutes (i.e. p ◦ f̃ = f):

(X̃, x̃0)

(Y, y0) (X,x0)

p

f

f̃

if and only if the following condition holds:

f∗π1(Y, y0) ≤ p∗π1(X̃, x̃0).

Note that uniqueness comes from the uniqueness of lifts. So this lemma is
really about existence.

Also, note that the condition holds trivially when Y is simply connected, e.g.
when it is an interval (path lifting) or a square (homotopy lifting). So paths and
homotopies can always be lifted.

Proof. One direction is easy: if f̃ exists, then f = p ◦ f̃ . So f∗ = p∗ ◦ f̃∗. So we
know that im f∗ ⊆ im p∗. So done.

In the other direction, uniqueness follows from the uniqueness of lifts. So we
only need to prove existence. We define f̃ as follows:

Given a y ∈ Y , there is some path αy : y0  y. Then f maps this to

βy : x0  f(y) in X. By path lifting, this path lifts uniquely to β̃y in X̃. Then

we set f̃(y) = β̃y(1). Note that if f̃ exists, then this must be what f̃ sends y to.
What we need to show is that this is well-defined.
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4 Some group theory II Algebraic Topology

a bx0

We call this a “rose with 2 petals”. This is a cell complex, with one 0-cell and |S|
1-cells. For each s ∈ S, we have one 1-cell, es, and we fix a path γs : [0, 1]→ es
that goes around the 1-cell once. We will call the 0-cells and 1-cells vertices and
edges, and call the whole thing a graph.

What’s the universal cover of X? Since we are just lifting a 1-complex, the
result should be a 1-complex, i.e. a graph. Moreover, this graph is connected
and simply connected, i.e. it’s a tree. We also know that every vertex in the
universal cover is a copy of the vertex in our original graph. So it must have 4
edges attached to it. So it has to look like something this:

x̃0

In X, we know that at each vertex, there should be an edge labeled a going in;
an edge labeled a going out; an edge labeled b going in; an edge labeled b going
out. This should be the case in X̃ as well. So X̃ looks like this:

x̃0 aa

b

b

ab

b

The projection map is then obvious — we send all the vertices in X̃ to x0 ∈ X,
and then the edges according to the labels they have, in a way that respects the
direction of the arrow. It is easy to show this is really a covering map.

41

Preview from Notesale.co.uk

Page 41 of 95



5 Seifert-van Kampen theorem II Algebraic Topology

5 Seifert-van Kampen theorem

5.1 Seifert-van Kampen theorem

The Seifert-van Kampen theorem is the theorem that tells us what happens
when we glue spaces together.

Here we let X = A ∪B, where A,B,A ∩B are path-connected.

x0

A B

We pick a basepoint x0 ∈ A∩B for convenience. Since we like diagrams, we can
write this as a commutative diagram:

A ∩B B

A X

where all arrows are inclusion (i.e. injective) maps. We can consider what
happens when we take the fundamental groups of each space. Then we have the
induced homomorphisms

π1(A ∩B, x0) π1(B, x0)

π1(A, x0) π1(X,x0)

We might guess that π1(X,x0) is just the free product with amalgamation

π1(X,x0) = π1(A, x0) ∗
π1(A∩B,x0)

π1(B, x0).

The Seifert-van Kampen theorem says that, under mild hypotheses, this guess is
correct.

Theorem (Seifert-van Kampen theorem). Let A,B be open subspaces of X such
that X = A∪B, and A,B,A∩B are path-connected. Then for any x0 ∈ A∩B,
we have

π1(X,x0) = π1(A, x0) ∗
π1(A∩B,x0)

π1(B, x0).

Note that by the universal property of the free product with amalgamation,
we by definition know that there is a unique map π1(A, x0) ∗

π1(A∩B,x0)
π1(B, x0)→

π1(X,x0). The theorem asserts that this map is an isomorphism.
Proof is omitted because time is short.

Example. Consider a higher-dimensional sphere Sn = {v ∈ Rn+1 : |v| = 1} for
n ≥ 2. We want to find π1(Sn).

The idea is to write Sn as a union of two open sets. We let n = e1 ∈ Sn ⊆
Rn+1 be the North pole, and s = −e1 be the South pole. We let A = Sn \ {n},
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5 Seifert-van Kampen theorem II Algebraic Topology

If we just wanted a torus, we are done (after closing the loop), but now we want
a surface with genus 2, so we add another torus:

a1

b1

a1

b1 a2

b2

a2

b2

To visualize how this works, imagine cutting this apart along the dashed line.
This would give two tori with a hole, where the boundary of the holes are just the
dashed line. Then gluing back the dashed lines would give back our orientable
surface with genus 2.

In general, to produce Σg, we produce a polygon with 4g sides. Then we get

π1Σg = 〈a1, b1, · · · , ag, bg | a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g 〉.

We do we care? The classification theorem tells us that each surface is homeomor-
phic to some of these orientable and non-orientable surfaces, but it doesn’t tell us
there is no overlap. It might be that Σ6

∼= Σ241, via some weird homeomorphism
that destroys some holes.

However, this result lets us know that all these orientable surfaces are
genuinely different. While it is difficult to stare at this fundamental group
and say that π1Σg 6∼= π1Σg′ for g 6= g′, we can perform a little trick. We can
take the abelianization of the group π1Σg, where we further quotient by all
commutators. Then the abelianized fundamental group of Σg will simply be
Z2g. These are clearly distinct for different values of g. So all these surfaces are
distinct. Moreover, they are not even homotopy equivalent.

The fundamental groups of the non-orientable surfaces is left as an exercise
for the reader.
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The relevance is that these can be used to define simplices (which are simple,
as opposed to complexes).

Definition (n-simplex). An n-simplex is the convex hull of (n + 1) affinely
independent points a0, · · · , an ∈ Rm, i.e. the set

σ = 〈a0, · · · , an〉 =

{
n∑
i=0

tiai :

n∑
i=0

ti = 1, ti ≥ 0

}
.

The points a0, · · · , an are the vertices, and are said to span σ. The (n+ 1)-tuple
(t0, · · · , tn) is called the barycentric coordinates for the point

∑
tiai.

Example. When n = 0, then our 0-simplex is just a point:

When n = 1, then we get a line:

When n = 2, we get a triangle:

When n = 3, we get a tetrahedron:

The key motivation of this is that simplices are determined by their vertices.
Unlike arbitrary subspaces of Rn, they can be specified by a finite amount of
data. We can also easily extract the faces of the simplices.

Definition (Face, boundary and interior). A face of a simplex is a subset (or
subsimplex) spanned by a subset of the vertices. The boundary is the union of
the proper faces, and the interior is the complement of the boundary.

The boundary of σ is usually denoted by ∂σ, while the interior is denoted by
σ̊, and we write τ ≤ σ when τ is a face of σ.

In particular, the interior of a vertex is the vertex itself. Note that this
notions of interior and boundary are distinct from the topological notions of
interior and boundary.

Example. The standard n-simplex is spanned by the basis vectors {e0, · · · , en}
in Rn+1. For example, when n = 2, we get the following:
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So g is a simplicial approximation of f .
The last part follows from the observation that if f is a simplicial map, then

it maps vertices to vertices. So we can pick g(v) = f(v).
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v0 v1
−v0 v1

If we take a triangle, we get

v0 v2

v1

v0 v2

v1

An important property of the boundary map is that the boundary of a boundary
is empty:

Lemma. dn−1 ◦ dn = 0.

In other words, im dn+1 ⊆ ker dn.

Proof. This just involves expanding the definition and working through the
mess.

With this in mind, we will define the homology groups as follows:

Definition (Simplicial homology group Hn(K)). The nth simplicial homology
group Hn(K) is defined as

Hn(K) =
ker dn

im dn+1
.

This is a nice, clean definition, but what does this mean geometrically?
Somehow, Hk(K) describes all the “k-dimensional holes” in |K|. Since we

are going to draw pictures, we are going to start with the easy case of k = 1.
Our H1(K) is made from the kernel of d1 and the image of d2. First, we give
these things names.

Definition (Chains, cycles and boundaries). The elements of Ck(K) are called
k-chains of K, those of ker dk are called k-cycles of K, and those of im dk+1 are
called k-boundaries of K.

Suppose we have some c ∈ ker dk. In other words, dc = 0. If we interpret c
as a “path”, if it has no boundary, then it represents some sort of loop, i.e. a
cycle. For example, if we have the following cycle:

e0 e2

e1

We have
c = (e0, e1) + (e1, e2) + (e2, e0).

We can then compute the boundary as

dc = (e1 − e0) + (e2 − e1) + (e0 − e2) = 0.
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We have now everything we need to know about the homology groups, and we
just need to do some linear algebra to figure out the image and kernel, and thus
the homology groups. We have

H0(K) =
ker(d0 : C0(K)→ C−1(K))

im(d1 : C1(K)→ C0(K))
∼=
C0(K)

im d1

∼=
Z3

im d1
.

After doing some row operations with our matrix, we see that the image of d1 is
a two-dimensional subspace generated by the image of two of the edges. Hence
we have

H0(K) = Z.

What does this H0(K) represent? We initially said that Hk(K) should represent
the k-dimensional holes, but when k = 0, this is simpler. As for π0, H0 just
represents the path components of K. We interpret this to mean K has one
path component. In general, if K has r path components, then we expect H0(K)
to be Zr.

Similarly, we have

H1(K) =
ker d1

im d2

∼= ker d1.

It is easy to see that in fact we have

ker d1 = 〈(e0, e1) + (e1, e2) + (e2, e0)〉 ∼= Z.

So we also have
H1(K) ∼= Z.

We see that this H1(K) is generated by precisely the single loop in the triangle.
The fact that H1(K) is non-trivial means that we do indeed have a hole in the
middle of the circle.

Example. Let L be the standard 2-simplex (and all its faces) in R3.

e0

e1

e2

Now our chain groups are

C0(L) = C0(K) ∼= Z3 ∼= 〈(e0), (e1), (e2)〉
C1(L) = C1(K) ∼= Z3 ∼= 〈(e0, e1), (e1, e2), (e2, e0)〉
C2(L) ∼= Z = 〈(e0, e1, e2)〉.
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We will learn how to compute the homology of the union M ∪ N in terms of
those of M,N and M ∩N .

Recall that to state the Seifert-van Kampen theorem, we needed to learn
some new group-theoretic notions, such as free products with amalgamation.
The situation is somewhat similar here. We will need to learn some algebra in
order to state the Mayer-Vietoris theorem. The objects we need are known as
exact sequences.

Definition (Exact sequence). A pair of homomorphisms of abelian groups

A B C
f g

is exact (at B) if
im f = ker g.

A collection of homomorphisms

· · · Ai Ai+1 Ai+2 · · ·fi−1 fi fi+1 fi+2

is exact at Ai if
ker fi = im fi−1.

We say it is exact if it is exact at every Ai.

Recall that we have seen something similar before. When we defined the
chain complexes, we had d2 = 0, i.e. im d ⊆ ker d. Here we are requiring exact
equivalence, which is something even better.

Algebraically, we can think of an exact sequence as chain complexes with
trivial homology groups. Alternatively, we see the homology groups as measuring
the failure of a sequence to be exact.

There is a particular type of exact sequences that is important.

Definition (Short exact sequence). A short exact sequence is an exact sequence
of the form

0 A B C 0
f g

What does this mean?

– The kernel of f is equal to the image of the zero map, i.e. {0}. So f is
injective.

– The image of g is the kernel of the zero map, which is everything. So g is
surjective.

– im f = ker g.

Since we like chain complexes, we can produce short exact sequences of chain
complexes.

Definition (Short exact sequence of chain complexes). A short exact sequence
of chain complexes is a pair of chain maps i· and j·

0 A· B· C· 0
i· j·
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By our previous calculation, we know a∗ is a map a∗ : Z→ Z. If a is homotopic
to the identity, then a∗ should be homotopic to the identity map. We will now
compute a∗ and show that it is multiplication by −1 when n is even.

To do this, we want to use a triangulation that is compatible with the
antipodal map. The standard triangulation clearly doesn’t work. Instead, we
use the following triangulation h : |K| → Sn:

The vertices of K are given by

VK = {±e0,±e1, · · · ,±en}.

This triangulation works nicely with the antipodal map, since this maps a vertex
to a vertex. To understand the homology group better, we need the following
lemma:

Lemma. In the triangulation of Sn given by vertices VK = {±e0,±e1, · · · ,±en},
the element

x =
∑

ε∈{±1}n+1

ε0 · · · εn(ε0e0, · · · , εnen)

is a cycle and generates Hn(Sn).

Proof. By direct computation, we see that dx = 0. So x is a cycle. To show it
generates Hn(Sn), we note that everything in Hn(Sn) ∼= Z is a multiple of the
generator, and since x has coefficients ±1, it cannot be a multiple of anything
else (apart from −x). So x is indeed a generator.

Now we can prove our original proposition.

Proposition. If n is even, then the antipodal map a 6' id.

Proof. We can directly compute that a∗x = (−1)n+1x. If n is even, then a∗ = −1,
but id∗ = 1. So a 6' id.

7.7 Homology of surfaces

We want to study compact surfaces and their homology groups. To work with
the simplicial homology, we need to assume they are triangulable. We will not
prove this fact, and just assume it to be true (it really is).

Recall we have classified compact surfaces, and have found the following
orientable surfaces Σg.
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Example. If α : Sn → Sn is the antipodal map, we saw that α∗ : Hn(Sn) →
Hn(Sn) is multiplication by (−1)n+1. So

L(α) = 1 + (−1)n(−1)n+1 = 1− 1 = 0.

We see that even though the antipodal map has different behaviour for
different dimensions, the Lefschetz number ends up being zero all the time. We
will soon see why this is the case.

Why do we want to care about the Lefschetz number? The important thing
is that we will use this to prove a really powerful generalization of Brouwer’s
fixed point theorem that allows us to talk about things that are not balls.

Before that, we want to understand the Lefschetz number first. To define the
Lefschetz number, we take the trace of f∗, and this is a map of the homology
groups. However, we would like to understand the Lefschetz number in terms of
the chain groups, since these are easier to comprehend. Recall that the homology
groups are defined as quotients of the chain groups, so we would like to know
what happens to the trace when we take quotients.

Lemma. Let V be a finite-dimensional vector space and W ≤ V a subspace.
Let A : V → V be a linear map such that A(W ) ⊆W . Let B = A|W : W →W
and C : V/W → V/W the induced map on the quotient. Then

tr(A) = tr(B) + tr(C).

Proof. In the right basis,

A =

(
B A′

0 C

)
.

What this allows us to do is to not look at the induced maps on homology,
but just the maps on chain complexes. This makes our life much easier when it
comes to computation.

Corollary. Let f· : C·(K;Q)→ C·(K;Q) be a chain map. Then∑
i≥0

(−1)i tr(fi : Ci(K)→ Ci(K)) =
∑
i≥0

(−1)i tr(f∗ : Hi(K)→ Hi(K)),

with homology groups understood to be over Q.

This is a great corollary. The thing on the right is the conceptually right
thing to have — homology groups are nice and are properties of the space itself,
not the triangulation. However, to actually do computations, we want to work
with the chain groups and actually calculate with chain groups.

Proof. There is an exact sequence

0 Bi(K;Q) Zi(K;Q) Hi(K;Q) 0

This is since Hi(K,Q) is defined as the quotient of Zi over Bi. We also have the
exact sequence

0 Zi(K;Q) Ci(K;Q) Bi−1(K;Q) 0
di
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