
1 Classical probability IA Probability

Here we are assuming that each outcome is equally likely to happen, which
is the case in (fair) dice rolls and coin flips.

Example. Suppose r digits are drawn at random from a table of random digits
from 0 to 9. What is the probability that

(i) No digit exceeds k;

(ii) The largest digit drawn is k?

The sample space is Ω = {(a1, a2, · · · , ar) : 0 ≤ ai ≤ 9}. Then |Ω| = 10r.
Let Ak = [no digit exceeds k] = {(a1, · · · , ar) : 0 ≤ ai ≤ k}. Then |Ak| =

(k + 1)r. So

P (Ak) =
(k + 1)r

10r
.

Now let Bk = [largest digit drawn is k]. We can find this by finding all outcomes
in which no digits exceed k, and subtract it by the number of outcomes in which
no digit exceeds k − 1. So |Bk| = |Ak| − |Ak−1| and

P (Bk) =
(k + 1)r − kr

10r
.

1.2 Counting

To find probabilities, we often need to count things. For example, in our example
above, we had to count the number of elements in Bk.

Example. A menu has 6 starters, 7 mains and 6 desserts. How many possible
meals combinations are there? Clearly 6× 7× 6 = 252.

Here we are using the fundamental rule of counting:

Theorem (Fundamental rule of counting). Suppose we have to make r multiple
choices in sequence. There are m1 possibilities for the first choice, m2 possibilities
for the second etc. Then the total number of choices is m1 ×m2 × · · ·mr.

Example. How many ways can 1, 2, · · · , n be ordered? The first choice has n
possibilities, the second has n−1 possibilities etc. So there are n×(n−1)×· · ·×1 =
n!.

Sampling with or without replacement

Suppose we have to pick n items from a total of x items. We can model this as
follows: Let N = {1, 2, · · · , n} be the list. Let X = {1, 2, · · · , x} be the items.
Then each way of picking the items is a function f : N → X with f(i) = item at
the ith position.

Definition (Sampling with replacement). When we sample with replacement,
after choosing at item, it is put back and can be chosen again. Then any sampling
function f satisfies sampling with replacement.

Definition (Sampling without replacement). When we sample without replace-
ment, after choosing an item, we kill it with fire and cannot choose it again.
Then f must be an injective function, and clearly we must have x ≥ n.
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1 Classical probability IA Probability

– Re-number each item by the number of the draw on which it was first seen.
For example, we can rename (2, 5, 2) and (5, 4, 5) both as (1, 2, 1). This
happens if the labelling of items doesn’t matter.

– Both of above. So we can rename (2, 5, 2) and (8, 5, 5) both as (1, 1, 2).

Total number of cases

Combining these four possibilities with whether we have replacement, no replace-
ment, or “everything has to be chosen at least once”, we have 12 possible cases
of counting. The most important ones are:

– Replacement + with ordering: the number of ways is xn.

– Without replacement + with ordering: the number of ways is x(n) = xn =
x(x− 1) · · · (x− n+ 1).

– Without replacement + without order: we only care which items get
selected. The number of ways is

(
x
n

)
= Cxn = x(n)/n!.

– Replacement + without ordering: we only care how many times the item
got chosen. This is equivalent to partitioning n into n1 + n2 + · · · + nk.
Say n = 6 and k = 3. We can write a particular partition as

∗∗ | ∗ | ∗ ∗ ∗

So we have n+ k − 1 symbols and k − 1 of them are bars. So the number
of ways is

(
n+k−1
k−1

)
.

Multinomial coefficient

Suppose that we have to pick n items, and each item can either be an apple or
an orange. The number of ways of picking such that k apples are chosen is, by
definition,

(
n
k

)
.

In general, suppose we have to fill successive positions in a list of length
n, with replacement, from a set of k items. The number of ways of doing so
such that item i is picked ni times is defined to be the multinomial coefficient(

n
n1,n2,··· ,nk

)
.

Definition (Multinomial coefficient). A multinomial coefficient is(
n

n1, n2, · · · , nk

)
=

(
n

n1

)(
n− n1

n2

)
· · ·
(
n− n1 · · · − nk−1

nk

)
=

n!

n1!n2! · · ·nk!
.

It is the number of ways to distribute n items into k positions, in which the ith
position has ni items.

Example. We know that

(x+ y)n = xn +

(
n

1

)
xn−1y + · · ·+ yn.

If we have a trinomial, then

(x+ y + z)n =
∑

n1,n2,n3

(
n

n1, n2, n3

)
xn1yn2zn3 .
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1 Classical probability IA Probability

Example. How many ways can we deal 52 cards to 4 player, each with a hand
of 13? The total number of ways is(

52

13, 13, 13, 13

)
=

52!

(13!)4
= 53644737765488792839237440000 = 5.36× 1028.

While computers are still capable of calculating that, what if we tried more
power cards? Suppose each person has n cards. Then the number of ways is

(4n)!

(n!)4
,

which is huge. We can use Stirling’s Formula to approximate it:

1.3 Stirling’s formula

Before we state and prove Stirling’s formula, we prove a weaker (but examinable)
version:

Proposition. log n! ∼ n log n

Proof. Note that

log n! =

n∑
k=1

log k.

Now we claim that∫ n

1

log x dx ≤
n∑
1

log k ≤
∫ n+1

1

log x dx.

This is true by considering the diagram:

x

y

lnx
ln(x− 1)

We actually evaluate the integral to obtain

n log n− n+ 1 ≤ log n! ≤ (n+ 1) log(n+ 1)− n;

Divide both sides by n log n and let n→∞. Both sides tend to 1. So

log n!

n log n
→ 1.

Now we prove Stirling’s Formula:
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2 Axioms of probability IA Probability

(i) P(∅) = 0

(ii) P(AC) = 1− P(A)

(iii) A ⊆ B ⇒ P(A) ≤ P(B)

(iv) P(A ∪B) = P(A) + P(B)− P(A ∩B).

Proof.

(i) Ω and ∅ are disjoint. So P(Ω) + P(∅) = P(Ω ∪ ∅) = P(Ω). So P(∅) = 0.

(ii) P(A) + P(AC) = P(Ω) = 1 since A and AC are disjoint.

(iii) Write B = A ∪ (B ∩AC). Then
P (B) = P(A) + P(B ∩AC) ≥ P(A).

(iv) P(A ∪ B) = P(A) + P(B ∩ AC). We also know that P(B) = P(A ∩ B) +
P(B ∩AC). Then the result follows.

From above, we know that P(A ∪B) ≤ P(A) + P(B). So we say that P is a
subadditive function. Also, P(A ∩B) + P(A ∪B) ≤ P(A) + P(B) (in fact both
sides are equal!). We say P is submodular.

The next theorem is better expressed in terms of limits.

Definition (Limit of events). A sequence of events A1, A2, · · · is increasing if
A1 ⊆ A2 · · · . Then we define the limit as

lim
n→∞

An =

∞⋃
1

An.

Similarly, if they are decreasing, i.e. A1 ⊇ A2 · · · , then

lim
n→∞

An =

∞⋂
1

An.

Theorem. If A1, A2, · · · is increasing or decreasing, then

lim
n→∞

P(An) = P
(

lim
n→∞

An

)
.

Proof. Take B1 = A1, B2 = A2 \A1. In general,

Bn = An \
n−1⋃

1

Ai.

Then
n⋃
1

Bi =

n⋃
1

Ai,

∞⋃
1

Bi =

∞⋃
1

Ai.
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2 Axioms of probability IA Probability

Then

P

(
n⋃
i=1

Ai

)
=
∑
k

P(Ak)−
∑
k1<k2

P(Ak1 ∩Ak2) + · · ·

= n · 1

n
−
(
n

2

)
1

n

1

n− 1
+

(
n

3

)
1

n

1

n− 1

1

n− 2
+ · · ·

= 1− 1

2!
+

1

3!
− · · ·+ (−1)n−1 1

n!

→ e−1

So the probability of derangement is 1− P(
⋃
Ak) ≈ 1− e−1 ≈ 0.632.

Recall that, from inclusion exclusion,

P(A ∪B ∪ C) = P(A) + P(B) + P(C)− P(AB)− P(BC)− P(AC) + P(ABC),

where P(AB) is a shorthand for P(A ∩B). If we only take the first three terms,
then we get Boole’s inequality

P(A ∪B ∪ C) ≤ P(A) + P(B) + P(C).

In general

Theorem (Bonferroni’s inequalities). For any events A1, A2, · · · , An and 1 ≤
r ≤ n, if r is odd, then

P

(
n⋃
1

Ai

)
≤
∑
i1

P(Ai1)−
∑
i1<i2

P(Ai1Ai2) +
∑

i1<i2<i3

P(Ai1Ai2Ai3) + · · ·

+
∑

i1<i2<···<ir

P(Ai1Ai2Ai3 · · ·Air ).

If r is even, then

P

(
n⋃
1

Ai

)
≥
∑
i1

P(Ai1)−
∑
i1<i2

P(Ai1Ai2) +
∑

i1<i2<i3

P(Ai1Ai2Ai3) + · · ·

−
∑

i1<i2<···<ir

P(Ai1Ai2Ai3 · · ·Air ).

Proof. Easy induction on n.

Example. Let Ω = {1, 2, · · · ,m} and 1 ≤ j, k ≤ m. Write Ak = {1, 2, · · · , k}.
Then

Ak ∩Aj = {1, 2, · · · ,min(j, k)} = Amin(j,k)

and
Ak ∪Aj = {1, 2, · · · ,max(j, k)} = Amax(j,k).

We also have P(Ak) = k/m.
Now let 1 ≤ x1, · · · , xn ≤ m be some numbers. Then Bonferroni’s inequality

says

P
(⋃

Axi

)
≥
∑

P(Axi)−
∑
i<j

P(Axi ∩Axj ).

So
max{x1, x2, · · · , xn} ≥

∑
xi −

∑
i1<i2

min{x1, x2}.
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2 Axioms of probability IA Probability

Example. Let Aij be the event that i and j roll the same. We roll 4 dice. Then

P(A12 ∩A13) =
1

6
· 1

6
=

1

36
= P(A12)P(A13).

But

P(A12 ∩A13 ∩A23) =
1

36
6= P(A12)P(A13)P(A23).

So they are not mutually independent.

We can also apply this concept to experiments. Suppose we model two
independent experiments with Ω1 = {α1, α2, · · · } and Ω2 = {β1, β2, · · · } with
probabilities P(αi) = pi and P(βi) = qi. Further suppose that these two
experiments are independent, i.e.

P((αi, βj)) = piqj

for all i, j. Then we can have a new sample space Ω = Ω1 × Ω2.
Now suppose A ⊆ Ω1 and B ⊆ Ω2 are results (i.e. events) of the two

experiments. We can view them as subspaces of Ω by rewriting them as A× Ω2

and Ω1 ×B. Then the probability

P(A ∩B) =
∑

αi∈A,βi∈B

piqi =
∑
αi∈A

pi
∑
βi∈B

qi = P(A)P(B).

So we say the two experiments are “independent” even though the term usually
refers to different events in the same experiment. We can generalize this to n
independent experiments, or even countably many infinite experiments.

2.4 Important discrete distributions

We’re now going to quickly go through a few important discrete probability
distributions. By discrete we mean the sample space is countable. The sample
space is Ω = {ω1, ω2, · · · } and pi = P({ωi}).

Definition (Bernoulli distribution). Suppose we toss a coin. Ω = {H,T} and
p ∈ [0, 1]. The Bernoulli distribution, denoted B(1, p) has

P(H) = p; P(T ) = 1− p.

Definition (Binomial distribution). Suppose we toss a coin n times, each with
probability p of getting heads. Then

P(HHTT · · ·T ) = pp(1− p) · · · (1− p).

So

P(two heads) =

(
n

2

)
p2(1− p)n−2.

In general,

P(k heads) =

(
n

k

)
pk(1− p)n−k.

We call this the binomial distribution and write it as B(n, p).
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2 Axioms of probability IA Probability

Note that if A and B are independent, then

P(A | B) =
P(A ∩B)

P(B)
=

P(A)P(B)

P(B)
= P(A).

Example. In a game of poker, let Ai = [player i gets royal flush]. Then

P(A1) = 1.539× 10−6.

and
P(A2 | A1) = 1.969× 10−6.

It is significantly bigger, albeit still incredibly tiny. So we say “good hands
attract”.

If P(A | B) > P(A), then we say that B attracts A. Since

P(A ∩B)

P(B)
> P(A)⇔ P(A ∩B)

P(A)
> P(B),

A attracts B if and only if B attracts A. We can also say A repels B if A attracts
BC .

Theorem.

(i) P(A ∩B) = P(A | B)P(B).

(ii) P(A ∩B ∩ C) = P(A | B ∩ C)P(B | C)P(C).

(iii) P(A | B ∩ C) = P(A∩B|C)
P(B|C) .

(iv) The function P( · | B) restricted to subsets of B is a probability function
(or measure).

Proof. Proofs of (i), (ii) and (iii) are trivial. So we only prove (iv). To prove
this, we have to check the axioms.

(i) Let A ⊆ B. Then P(A | B) = P(A∩B)
P(B) ≤ 1.

(ii) P(B | B) = P(B)
P(B) = 1.

(iii) Let Ai be disjoint events that are subsets of B. Then

P

(⋃
i

Ai

∣∣∣∣∣B
)

=
P(
⋃
iAi ∩B)

P(B)

=
P (
⋃
iAi)

P(B)

=
∑ P(Ai)

P(B)

=
∑ P(Ai ∩B)

P(B)

=
∑

P(Ai | B).
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3 Discrete random variables IA Probability

(ii) If X ≥ 0 and E[X] = 0, then P(X = 0) = 1.

(iii) If a and b are constants, then E[a+ bX] = a+ bE[X].

(iv) If X and Y are random variables, then E[X + Y ] = E[X] + E[Y ]. This is
true even if X and Y are not independent.

(v) E[X] is a constant that minimizes E[(X − c)2] over c.

Proof.

(i) X ≥ 0 means that X(ω) ≥ 0 for all ω. Then

E[X] =
∑
ω

pωX(ω) ≥ 0.

(ii) If there exists ω such that X(ω) > 0 and pω > 0, then E[X] > 0. So
X(ω) = 0 for all ω.

(iii)

E[a+ bX] =
∑
ω

(a+ bX(ω))pω = a+ b
∑
ω

pω = a+ b E[X].

(iv)

E[X+Y ] =
∑
ω

pω[X(ω)+Y (ω)] =
∑
ω

pωX(ω)+
∑
ω

pωY (ω) = E[X]+E[Y ].

(v)

E[(X − c)2] = E[(X − E[X] + E[X]− c)2]

= E[(X − E[X])2 + 2(E[X]− c)(X − E[X]) + (E[X]− c)2]

= E(X − E[X])2 + 0 + (E[X]− c)2.

This is clearly minimized when c = E[X]. Note that we obtained the zero
in the middle because E[X − E[X]] = E[X]− E[X] = 0.

An easy generalization of (iv) above is

Theorem. For any random variables X1, X2, · · ·Xn, for which the following
expectations exist,

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi].

Proof.∑
ω

p(ω)[X1(ω) + · · ·+Xn(ω)] =
∑
ω

p(ω)X1(ω) + · · ·+
∑
ω

p(ω)Xn(ω).

Definition (Variance and standard deviation). The variance of a random
variable X is defined as

var(X) = E[(X − E[X])2].

The standard deviation is the square root of the variance,
√

var(X).
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3 Discrete random variables IA Probability

We also have

E[N2] = E
[(∑

I[Ai]
)2
]

= E

∑
i

I[Ai]
2 + 2

∑
i<j

I[Ai]I[Aj ]


= nE

[
I[Ai]

]
+ n(n− 1)E

[
I[A1]I[A2]

]
We have E[I[A1]I[A2]] = P(A1 ∩ A2) = 2

n

(
1

n−1
1

n−1 + n−2
n−1

2
n−1

)
. Plugging in,

we ultimately obtain var(N) = 2(n−2)
n−1 .

In fact, as n→∞, N ∼ P (2).

We can use these to prove the inclusion-exclusion formula:

Theorem (Inclusion-exclusion formula).

P

(
n⋃
i

Ai

)
=

n∑
1

P(Ai)−
∑
i1<i2

P(Ai1 ∩Aj2) +
∑

i1<i2<i3

P(Ai1 ∩Ai2 ∩Ai3)− · · ·

+ (−1)n−1P(A1 ∩ · · · ∩An).

Proof. Let Ij be the indicator function for Aj . Write

Sr =
∑

i1<i2<···<ir

Ii1Ii2 · · · Iir ,

and
sr = E[Sr] =

∑
i1<···<ir

P(Ai1 ∩ · · · ∩Air ).

Then

1−
n∏
j=1

(1− Ij) = S1 − S2 + S3 · · ·+ (−1)n−1Sn.

So

P

(
n⋃
1

Aj

)
= E

[
1−

n∏
1

(1− Ij)

]
= s1 − s2 + s3 − · · ·+ (−1)n−1sn.

We can extend the idea of independence to random variables. Two random
variables are independent if the value of the first does not affect the value of the
second.

Definition (Independent random variables). Let X1, X2, · · · , Xn be discrete
random variables. They are independent iff for any x1, x2, · · · , xn,

P(X1 = x1, · · · , Xn = xn) = P(X1 = x1) · · ·P(Xn = xn).

Theorem. If X1, · · · , Xn are independent random variables, and f1, · · · , fn are
functions R→ R, then f1(X1), · · · , fn(Xn) are independent random variables.
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Proof. Induct on n. It is true for n = 2 by the definition of convexity. Then

f(p1x1 + · · ·+ pnxn) = f

(
p1x1 + (p2 + · · ·+ pn)

p2x2 + · · ·+ lnxn
p2 + · · ·+ pn

)
≤ p1f(x1) + (p2 + · · · pn)f

(
p2x2 + · · ·+ pnxn
p2 + · · ·+ pn

)
.

≤ p1f(x1) + (p2 + · · ·+ pn)

[
p2

( )
f(x2) + · · ·+ pn

( )
f(xn)

]
= p1f(x1) + · · ·+ pn(xn).

where the ( ) is p2 + · · ·+ pn.
Strictly convex case is proved with ≤ replaced by < by definition of strict

convexity.

Corollary (AM-GM inequality). Given x1, · · · , xn positive reals, then(∏
xi

)1/n

≤ 1

n

∑
xi.

Proof. Take f(x) = − log x. This is convex since its second derivative is x−2 > 0.
Take P(x = xi) = 1/n. Then

E[f(x)] =
1

n

∑
− log xi = − log GM

and

f(E[x]) = − log
1

n

∑
xi = − log AM

Since f(E[x]) ≤ E[f(x)], AM ≥ GM. Since − log x is strictly convex, AM = GM
only if all xi are equal.

Theorem (Cauchy-Schwarz inequality). For any two random variables X,Y ,

(E[XY ])2 ≤ E[X2]E[Y 2].

Proof. If Y = 0, then both sides are 0. Otherwise, E[Y 2] > 0. Let

w = X − Y · E[XY ]

E[Y 2]
.

Then

E[w2] = E
[
X2 − 2XY

E[XY ]

E[Y 2]
+ Y 2 (E[XY ])2

(E[Y 2])2

]
= E[X2]− 2

(E[XY ])2

E[Y 2]
+

(E[XY ])2

E[Y 2]

= E[X2]− (E[XY ])2

E[Y 2]

Since E[w2] ≥ 0, the Cauchy-Schwarz inequality follows.
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We can have a sanity check: p(1) = 1, which makes sense, since p(1) is the sum
of probabilities.

We have

E[X] =
d

dz
eλ(z−1)

∣∣∣∣
z=1

= λ,

and

E[X(X − 1)] =
d2

dx2
eλ(z−1)

∣∣∣∣
z=1

= λ2

So
var(X) = E[X2]− E[X]2 = λ2 + λ− λ2 = λ.

Theorem. Suppose X1, X2, · · · , Xn are independent random variables with pgfs
p1, p2, · · · , pn. Then the pgf of X1 +X2 + · · ·+Xn is p1(z)p2(z) · · · pn(z).

Proof.

E[zX1+···+Xn ] = E[zX1 · · · zXn ] = E[zX1 ] · · ·E[zXn ] = p1(z) · · · pn(z).

Example. Let X ∼ B(n, p). Then

p(z) =

n∑
r=0

P(X = r)zr =
∑(

n

r

)
pr(1− p)n−rzr = (pz+ (1− p))n = (pz+ q)n.

So p(z) is the product of n copies of pz+ q. But pz+ q is the pgf of Y ∼ B(1, p).
This shows that X = Y1 + Y2 + · · · + Yn (which we already knew), i.e. a

binomial distribution is the sum of Bernoulli trials.

Example. If X and Y are independent Poisson random variables with parame-
ters λ, µ respectively, then

E[tX+Y ] = E[tX ]E[tY ] = eλ(t−1)eµ(t−1) = e(λ+µ)(t−1)

So X + Y ∼ P(λ+ µ).
We can also do it directly:

P(X + Y = r) =

r∑
i=0

P(X = i, Y = r − i) =

r∑
i=0

P(X = i)P(X = r − i),

but is much more complicated.

We can use pgf-like functions to obtain some combinatorial results.

Example. Suppose we want to tile a 2× n bathroom by 2× 1 tiles. One way
to do it is

39

Preview from Notesale.co.uk

Page 39 of 78
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In general, we get the following result:

Theorem. Let U ∼ U [0, 1]. For any strictly increasing distribution function F ,
the random variable X = F−1U has distribution function F .

Proof.
P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).

This condition “strictly increasing” is needed for the inverse to exist. If it is
not, we can define

F−1(u) = inf{x : F (x) ≥ u, 0 < u < 1},

and the same result holds.
This can also be done for discrete random variables P(X = xi) = pi by letting

X = xj if

j−1∑
i=0

pi ≤ U <

j∑
i=0

pi,

for U ∼ U [0, 1].

Multiple random variables

Suppose X1, X2, · · · , Xn are random variables with joint pdf f . Let

Y1 = r1(X1, · · · , Xn)

Y2 = r2(X1, · · · , Xn)

...

Yn = rn(X1, · · · , Xn).

For example, we might have Y1 = X1

X1+X2
and Y2 = X1 +X2.

Let R ⊆ Rn such that P((X1, · · · , Xn) ∈ R) = 1, i.e. R is the set of all values
(Xi) can take.

Suppose S is the image of R under the above transformation, and the map
R→ S is bijective. Then there exists an inverse function

X1 = s1(Y1, · · · , Yn)

X2 = s2(Y1, · · · , Yn)

...

Xn = sn(Y1, · · · , Yn).

For example, if X1, X2 refers to the coordinates of a random point in Cartesian
coordinates, Y1, Y2 might be the coordinates in polar coordinates.

Definition (Jacobian determinant). Suppose ∂si
∂yj

exists and is continuous at

every point (y1, · · · , yn) ∈ S. Then the Jacobian determinant is

J =
∂(s1, · · · , sn)

∂(y1, · · · , yn)
= det


∂s1
∂y1

· · · ∂s1
∂yn

...
. . .

...
∂sn
∂y1

· · · ∂sn
∂yn
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5 Continuous random variables IA Probability

Example. Suppose X1, X2 have joint pdf f(x1, x2). Suppose we want to find
the pdf of Y = X1 +X2. We let Z = X2. Then X1 = Y −Z and X2 = Z. Then(

Y
Z

)
=

(
1 1
0 1

)(
X1

X2

)
= AX

Then |J | = 1/|detA| = 1. Then

g(y, z) = f(y − z, z)

So

gY (y) =

∫ ∞
−∞

f(y − z, z) dz =

∫ ∞
−∞

f(z, y − z) dz.

If X1 and X2 are independent, f(x1, x2) = f1(x1)f2(x2). Then

g(y) =

∫ ∞
−∞

f1(z)f2(y − z) dz.

Non-injective transformations

We previously discussed transformation of random variables by injective maps.
What if the mapping is not? There is no simple formula for that, and we have
to work out each case individually.

Example. Suppose X has pdf f . What is the pdf of Y = |X|?
We use our definition. We have

P(|X| ∈ x(a, b)) =

∫ b

a

f(x) +

∫ −a
−b

f(x) dx =

∫ b

a

(f(x) + f(−x)) dx.

So
fY (x) = f(x) + f(−x),

which makes sense, since getting |X| = x is equivalent to getting X = x or
X = −x.

Example. Suppose X1 ∼ E(λ), X2 ∼ E(µ) are independent random variables.
Let Y = min(X1, X2). Then

P(Y ≥ t) = P(X1 ≥ t,X2 ≥ t)
= P(X1 ≥ t)P(X2 ≥ t)
= e−λte−µt

= e−(λ+µ)t.

So Y ∼ E(λ+ µ).

Given random variables, not only can we ask for the minimum of the variables,
but also ask for, say, the second-smallest one. In general, we define the order
statistics as follows:

Definition (Order statistics). Suppose that X1, · · · , Xn are some random vari-
ables, and Y1, · · · , Yn is X1, · · · , Xn arranged in increasing order, i.e. Y1 ≤ Y2 ≤
· · · ≤ Yn. This is the order statistics.

We sometimes write Yi = X(i).
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