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2  Curves and Line TA Vector Calculus

Now we try to integrate along another curve Cs : r(t) = (¢,¢,t). So r/(t) =

(1,1,1).
/CF~dr:/F'r'(t)dt

1
= / tet + 2t dt
0

We see that the line integral depends on the curve C in general, not just a, b.

We can also use the arclength s as the parameter. Since dr = t ds, with t
being the unit tangent vector, we have

/F~dr:/F~td5.
c c

Note that we do not necessarily have to integrate F - t with rebpect to s. We can
also integrate a scalar function as a function of s, fC ) ds. By convention,
this is calculated in the direction of increasing s. In partlcular, we have

\ cO-
Definition (Closed curve). A closed curve is X;ﬁ% e same start and
som

end point. The line mtegral along a es ) written as §

and is (sometlmes ) called t @ Ul tz

/ 1 ds = length of C.
c

aroui
lucky a not smooth For example,
olute valu Eg 10n t meOth However, often we can

E, art into m ents, each of which is smooth. Alternatively,
e can write the cur smooth curves. We call these piecewise smooth
curves.

Sometlm

Definition (Piecewise smooth curve). A piecewise smooth curve is a curve
C=C1+Cy+ -+ C, with all C; smooth with regular parametrisations. The
line integral over a piecewise smooth C' is

/F~dr:/ F-dr—l—/ F~dr—|—~-~+/ F -dr.
C Cy Cy Ch

Example. Take the example above, and let C5 = —C5. Then C = C + Cjs is
piecewise smooth but not smooth. Then

%F~dr:/ F~dr+/ F-dr
C Cy Cs
(e 1 5
—(2+4)-3
17 e
2ty

13



2  Curves and Line TA Vector Calculus

C
3 o,

2.3 Gradients and Differentials

Recall that the line integral depends on the actual curve taken, and not just the
end points. However, for some nice functions, the integral does depend on the
end points only.

Theorem. If F = V f(r), then

[P =10 f@).
C

where b and a are the end points of the curve.
In particular, the line integral does not depend on the curve, but the end
points only. This is the vector counterpart of the fundamental theorem of

calculus. A special case is when C' is a closed curve, then fc F.dr=0. }K

Proof. Let r(u) be any parametrization of the curve, and‘ é%gg

b = r(8). Then
[r- [sWQVER
So by thqcha '&(QX&) ,LA O€ %A’

Py e\,\ @@,@1 — f(b) - f(a). =

Definition (Conservative vector field). If F = V f for some f, the F is called a
conservative vector field.

The name conservative comes from mechanics, where conservative vector
fields represent conservative forces that conserve energy. This is since if the
force is conservative, then the integral (i.e. work done) about a closed curve is 0,
which means that we cannot gain energy after travelling around the loop.

It is convenient to treat differentials F - dr = F;dz; as if they were objects
by themselves, which we can integrate along curves if we feel like doing so.

Then we can define

Definition (Exact differential). A differential F - dr is ezact if there is an f
such that F = Vf. Then

of

Af = V) de= -

dl‘i.

To test if this holds, we can use the necessary condition

14



3 Integration in R? and R3 TA Vector Calculus

Note that in polar coordinates, we are integrating over a rectangle and the
function is separable. So this is equal to

= {_6_,;/2]: [90]3/2
g (1 — €7R2/2> . (*)

Note that the integral exists as R — oc.
Now we take the case of x,y — oo and consider the original integral.

/fdA /zo/ e~ @ H)/2 4y dy
([ ()

o3

where the last line is from (*). So each of the two integrals must be y/7/2, i.e.

oo—:tz/Qd: E
[eera ff

3.3 Generalization to R? u\(

We will do exactly the same thing as we just did, but w1tE 0\ @Qsi‘on:

Definition (Volume integral). Consider Vol h position vector
r = (x,y,z). We approximate V' by ﬁ@ nt subs s of some simple
shape (e.g. cuboids) la elle V7, con 1n n a solid sphere

of diameter £. g (Q%
Assu)\eew and N % &m f the small subsets tend to
Pt 0RQC s

where r7 is any chosen point in each small subset.

To evaluate this, we can take dV; = dzdydz, and take dx — 0, dy — 0 and
0z in some order. For example,

/Vf(r) dU:/D </ny f(z,y,2) dz) dz dy.

So we integrate f(z,y,z) over z at each point (z,y), then take the integral of
that over the area containing all required (z,y).
Alternatively, we can take the area integral first, and have

/Vf(r) dV_/Z< . f(z,y,2) do dy) de.

Again, if we take f = 1, then we obtain the volume of V.

Often, f(r) is the density of some quantity, and is usually denoted by p. For
example, we might have mass density, charge density, or probability density.
p(r)dV is then the amount of quantity in a small volume 6V at r. Then
fv p(r) dV is the total amount of quantity in V.
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4 Surfaces and surface integrals TA Vector Calculus

4 Surfaces and surface integrals

4.1 Surfaces and Normal

So far, we have learnt how to do calculus with regions of the plane or space.
What we would like to do now is to study surfaces in R?. The first thing to
figure out is how to specify surfaces. One way to specify a surface is to use an
equation. We let f be a smooth function on R3, and ¢ be a constant. Then
f(r) = c defines a smooth surface (e.g. 2% + 3 + 22 = 1 denotes the unit sphere).

Now consider any curve r(u) on S. Then by the chain rule, if we differentiate
f(r) = ¢ with respect to u, we obtain

d dr
() = VS =0,
This means that V f is always perpendicular to . Since gr is the tangent to

the curve, Vf is perpendicular to the tangent. Smce this is true for any curve
r(u), Vf is perpendicular to any tangent of the surface. Therefore

Proposition. Vf is the normal to the surface f(r) = c.

Example.

(i) Take the sphere f(r) = 22 +y? + 2% = ¢ for ¢ > 0. Then Vf é@z

2r, which is clearly normal to the sphere.

(i) Take f(r) = 22 + y? — 22 ic @6&10@ Then Vf =
2z .-, ﬂ
In the special ca have a dou %& a singular apex
0. Here {N (Ra d cannot ?i@ irection of normal.
aﬁd&l%ound e defined to have a boundary 05
P ting of a piece urve If we define S as in the above examples

but with the addition restriction z >0, then 99 is the circle 22 +y% = ¢, 2 = 0.

A surface is bounded if it can be contained in a solid sphere, unbounded
otherwise. A bounded surface with no boundary is called closed (e.g. sphere).

Example.

The boundary of a hemisphere is a circle (drawn in red).

Definition (Orientable surface). At each point, there is a unit normal n that’s
unique up to a sign.

If we can find a consistent choice of n that varies smoothly across S, then
we say S is orientable, and the choice of sign of n is called the orientation of the
surface.
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4 Surfaces and surface integrals TA Vector Calculus

The parametrizations we use will all be regular.

Given a surface, how could we, say, find its area? We can use our parametriza-
tion. Suppose points on the surface are given by r(u,v) for (u,v) € D. If we
want to find the area of D itself, we would simply integrate

/ du do.
D

However, we are just using u and v as arbitrary labels for points in the surface,
and one unit of area in D does not correspond to one unit of area in S. Instead,
suppose we produce a small rectangle in D by changing v and v by small du, dv.
In D, this corresponds to a rectangle with vertices (u,v), (u + du,v), (u,v +
dv), (u + du,v + dv), and spans an area Judv. In the surface S, these small
changes du, év correspond to changes %6’& and %(51)7 and these span a vector
area of
or Or

S = u X a—éuév =ndS.

Note that the order of u, v gives the choice of the sign of the unit normal.
The actual area is then given by

61‘ or

05 = au v

ou ov.

prede™ agﬁz

By summing and taking limits, the area of S is

/dS

Example. Consider again the part of the sphere of radius a with 0 < 0 < a.

81‘

3 du do.

Then we have
r(6,) = (acospsiné, asinfsin p, acos ) = ae,.
So we find

or
06

= aey.
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5  Geometry of curves and surfaces TA Vector Calculus

5 Geometry of curves and surfaces

Let r(s) be a curve parametrized by arclength s. Since t(s) = 4 is a unit vector,

t -t = 1. Differentiating yields t -t/ = 0. So t’ is a normal to the curve if t' # 0.
We define the following:

Definition (Principal normal and curvature). Write t' = xn, where n is a unit
vector and k > 0. Then n(s) is called the principal normal and x(s) is called
the curvature.

Note that we must be differentiating against s, not any other parametrization!
If the curve is given in another parametrization, we can either change the
parametrization or use the chain rule.

We take a curve that can Taylor expanded around s = 0. Then

1
r(s) = r(0) + sr’(0) + 5521"/(0) + O(s?).
We know that r' =t and r”” = t’. So we have
1
r(s) =r(0) + st(0) + 5&(0)8211 + 0(53).

How can we interpret s as the curvature? Suppose we want to approximate tUK
curve near r(0) by a circle. We would expect a more “curved” cur )
approximated by a circle of smaller radius. So x should b x ortional
to the radius of the circle. In fact, we will sh a where a is the
radius of the best-fit circle.

Consider the vector equ iq i passmg hr% 0) with radius a
in the plane defined ( \ 'ﬁ

J\e

Then the equation of the circle is
r =r(0) + a(l — cosf)n + asin ft.
We can expand this to obtain
1

r=r(0) + abt + 592an + 0(6%).

Since the arclength s = afl, we obtain
11 5 3
r=r(0)+ st + 355 n+ O(s”).

As promised, k = 1/a, for a the radius of the circle of best fit.
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8 Some applications of integral theorems TA Vector Calculus

Qe

If S is any surface with boundary 85 = C — C, By Stokes’ theorem,

/VxF-dS: F-dr:/F-dr—/F~dr.
s a5 le} c

But VxF =0. So
/F-dr—/F~dr:07
e] ¢

/F~dr:/F~dr. O
C C

Proposition. If (ii) fCF -dr is independent of C' for fixed end points and

or

orientation, then (i) F = Vf for some scalar field f. K
Proof. We fix a and define f(r fc -dr’ for any curve fr to\)
Assuming (ii), f is well-defined. For small changes rtor —l—\ mall
extension of C' by 6C. Then

—|—5r

eSS
oW (67 Y& ;

-dr’
g +F 5r+0(5r)

0f = f(r+dr) — f(r) =F(r) - dr + o(dr).
But the definition of grad is exactly

prev!

d0f =V f-ér+o(dr).
So we have F = V f. O

Note that these results assume F is defined on the whole of R3. It also
works of F is defined on a simply connected domain D, ie a subspace of R?
without holes. By definition, this means that any two curves C, C' with fixed
end points can be smoothly deformed into one another (alternatively, any loop
can be shrunk into a point).

If we have a smooth transformation from C to C, the process sweeps out a
surface bounded by C and C. This is required by the proof that (iii) = (ii).

If D is not simply connected, then we obtain a multi-valued f(r) on D in
general (for the proof (ii) = (i)). However, we can choose to restrict to a subset
Dy C D such that f(r) is single-valued on Dy.
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9 Orthogonal curvilinear coordinates TA Vector Calculus

9 Orthogonal curvilinear coordinates

9.1 Line, area and volume elements

In this chapter, we study funny coordinate systems. A coordinate system is,
roughly speaking, a way to specify a point in space by a set of (usually 3)
numbers. We can think of this as a function r(u, v, w).

By the chain rule, we have

or or or
dr = %du + %dv + %dw

For a good parametrization,
or (Or Or
T o,
Oou \Ov Ow
i.e. g;, % and g—; are linearly independent. These vectors are tangent to the

curves parametrized by u, v, w respectively when the other two are being fixed.
Even better, they should be orthogonal:

Definition (Orthogonal curvilinear coordinates). u,v,w are orthogonal curvi-
linear if the tangent vectors are orthogonal. K

We can then set CO .
T e ~ hye a\e .
du uy - vy @9

with hy, by, by > 0 and ey, evm r&gonotﬁnalglﬂanded basis (

ey X e, =ey). Then_‘
\, \ dr = h,e, d@ hv%&# hyey dw,
P a vy Paw deterr? %’Lges in length along each orthogonal direction

resultlng from change® in u, v, w. Note that clearly by definition, we have

or

Example.

(i) In cartesian coordlnates r(z, Yz z) =xi+yj+zk. Then hy =hy =h, =1,
andez—l ey—J and e, = k.

(ii) In cylindrical polars, r(p, ¢, z) = p[cos pi+sin pj] +zk. Then h, = h, =1,

and
or

htp:‘a(p

The basis vectors e,, e, e, are as in section 1.

= |[(—psingp, psin,0)| = p.

(iii) In spherical polars,
r(r,0, p) = r(cos @ sin 0 + sin O sin j + cos OK).
Then h, = 1,hg =r and hy, = rsinf.

o1



10 Gauss’ Law and Poisson’s equation TA Vector Calculus

The condition fc g - dr = 0 for any closed C' can be re-written by Stoke’s
theorem as

/ng~dS:0,
S

where S is bounded by the closed curve C'. This is true for arbitrary S. So
V xg=0.

In our example above, V x g = 0 due to spherical symmetry. But here we showed
that it is true for all cases.

Note that we exploited symmetry to solve Gauss’ law. However, if the mass
distribution is not sufficiently symmetrical, Gauss’ law in integral form can be
difficult to use. But we can rewrite it in differential form. Suppose

M:/Vp(r) dv.

where p is the mass density. Then by Gauss’ theorem

/g-dS:—47rGM:>/V-ng:/—47erdV.
S 14 Vv

Since this is true for all V', we must have K

.
Law (Gauss’ Law for gravitation in differential form). a'\ CO

" N
Since V x g = 0 @ ce a grav1ta‘0 %ntlal (r) with
= —Vg. Thw &v ecome55
P In the example with gencal symmetry, we can solve that

GM

@(T):—T

for r > a.

10.2 Laws of electrostatics

Counsider a distribution of electric charge at rest. They produce a force on a
charge ¢, at rest at r, which is proportional to q.

Definition (Electric field). The force produced by electric charges on another
charge ¢ is F = gE(r), where E(r) is the electric field, or force per unit charge.

Again, this is conservative. So

%E'dr:()
c

for any closed curve C. It also obeys
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11  Laplace’s and Poisson’s equations TA Vector Calculus

In words, this says that the value at the center of a sphere is the average of
the values on the surface on the sphere.

Proof. Note that (R) — ¢(a) as R — 0. We take spherical coordinates (u, 6, x)
centered on r = a. The scalar element (when v = R) on Sg is

dS = R?sinf dé dy.

So 9% is independent of R. Write

RZ
_ 1 ds
@(R)*E/SD Rz

Differentiate this with respect to R, noting that dS/R? is independent of R.
Then we obtain

d _ 1 [
EW(R) 47rR2/ ou |, dS
But 9 9
9P e . —n. _ 9
v e, - Vo=n-Vop n
on Sg. So

%@(R) 47:}%2/ V- dS = 41]%2/ v2<pdx/eo O \)\4

by divergence theorem. So @(R) does not e;@%@ e result follows. [
11.2.2 The maxi prlnc1 %A
In this bect WNKipk about max% fu 0 s. It should be clear that

d for mini

F ()emtlon (Local m QN e say that ¢(r) has a local mazimum at a if

forsome5>0 p(r) < p(a) when 0 < |[r —a| < e.

Proposition (Maximum principle). If a function ¢ is harmonic on a region V,
then ¢ cannot have a maximum at an interior point of a of V.

Proof. Suppose that ¢ had a local maximum at a in the interior. Then there is
an € such that for any r such that 0 < |r — a| < €, we have ¢(r) < ¢(a).

Note that if there is an € that works, then any smaller ¢ will work. Pick an ¢
sufficiently small such that the region |r — a| < € lies within V' (possible since a
lies in the interior of V).

Then for any r such that |r — a| = ¢, we have ¢(r) < p(a).

#0) = gog [, 9145 < pla),

which contradicts the mean value property. O

We can understand this by performing a local analysis of stationary points
by differentiation. Suppose at r = a, we have Vi = 0. Let the eigenvalues of the
Hessian matrix H;; = Bz o7, be ;. But since ¢ is harmonic, we have VZp = 0,
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12 Maxwell’s equations

12.1 Laws of electromagnetism

Maxwell’s equations are a set of four equations that describe the behaviours
of electromagnetism. Together with the Lorentz force law, these describe all
we know about (classical) electromagnetism. All other results we know are
simply mathematical consequences of these equations. It is thus important to
understand the mathematical properties of these equations.

To begin with, there are two fields that govern electromagnetism, known
as the electric and magnetic field. These are denoted by E(r,t) and B(r,t)
respectively.

To understand electromagnetism, we need to understand how these fields
are formed, and how these fields affect charged particles. The second is rather
straightforward, and is given by the Lorentz force law.

Law (Lorentz force law). A point charge ¢ experiences a force of
F =¢(E+1 xB).
The dynamics of the field itself is governed by Mazwell’s equations. To state

the equations, we need to introduce two more concepts.

as the charge per unit volume.

j(r,t) is the current density, defined as the 6&
ot

R A
Law\hﬁ@wuﬁﬁ@;g T ol o
Po

Definition (Charge and current density). p(r,t) is the chai’e den@@im\)

per unit area of

P(e _r
€0

V-B=0

VxE—&-%}?—O

OE
VxB-— j,
X HOE0 (7, ot = ol

where ¢ is the electric constant (permittivity of free space) and pg is the
magnetic constant (permeability of free space), which are constants determined
experimentally.

We can quickly derive some properties we know from these four equations.
The conservation of electric charge comes from taking the divergence of the last

equation.
0 .
V- (VxB) —HoZo 5, (V-E) = oV -j.
N———— t ——
=0 =p/eo
So op
=0.
ot +V.j=
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12 Mazwell’s equations TA Vector Calculus

We can also take the volume integral of the first equation to obtain

/V~EdV=i/pdV=Q
\% €0 Jv €0

By the divergence theorem, we have

/E~dS:9,
s €o

which is Gauss’ law for electric fields
We can integrate the second equation to obtain

/B~dS:O.
s

This roughly states that there are no “magnetic charges”.
The remaining Maxwell’s equations also have integral forms. For example,

/ E-drz/VxEdS:—g/B~dS,
Cc=05 s dt Js

where the first equality is from from Stoke’s theorem. This says that a changing

magnetic field produces a current. K
12.2 Static charges and steady currents CO 'u

If p,j, E, B are all independent of time, E and iég@gﬂzed

We can solve the equations for ele“
Of= /eo of ok
"( V x

fﬁi\tq\\%n give @:gutmg into first gives VZp = —p/eq.
P e equations for ic field are

V-B=0
VxB= ,U()j
First equation gives B = V x A for some vector potential A. But the vector

potential is not well-defined. Making the transformation A — A + Vx(x)
produces the same B, since V x (Vx) = 0. So choose x such that V- A = 0.

Then
24 _ AN s
VFA=V(V-A)—Vx(VxA) o]
=0 B
In summary, we have
Electrostatics Magnetostatics
V-E=p/ey V-B=0
VXxE=0 V x B = poj
V2o = —p/eg V2A = —poj.
o sets the scale of electrostatic effects, o sets the scale of magnetic effects,
e.g. the Coulomb force e.g. force between two wires with cur-
rents.
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14 Tensors of rank 2 TA Vector Calculus

T3

20

T

Y

VA

T2
Use cylindrical polar coordinates:

z1 =rcost

Lo = 7rsind
T3 = T3

dV =r dr df dxs

We have

I33 = ,Oo (z3 + 23) dV

e

imilarly, we have
L = / po(a3 + x3) AV
v
a 27 oL
= Po/ / / (r?sin® 0 + 22)r dr df dx;
21 L
—po/ / r(r sin 9[303] [3] > dé dr
—¢
2 2
~ / / r (1"2 sin2 20 + ei”) a6 dr
0o Jo 3
2 a 2
= po <27m' ~6 26/ 2 dr/ sin® 0)
0 0

= pora’l ( 5 + EQ>

By symmetry, the result for I is the same.
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