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2 Curves and Line IA Vector Calculus

Now we try to integrate along another curve C2 : r(t) = (t, t, t). So r′(t) =
(1, 1, 1). ∫

C2

F · dr =

∫
F · r′(t)dt

=

∫ 1

0

tet + 2t2 dt

=
5

3
.

We see that the line integral depends on the curve C in general, not just a,b.

We can also use the arclength s as the parameter. Since dr = t ds, with t
being the unit tangent vector, we have∫

C

F · dr =

∫
C

F · t ds.

Note that we do not necessarily have to integrate F · t with respect to s. We can
also integrate a scalar function as a function of s,

∫
C
f(s) ds. By convention,

this is calculated in the direction of increasing s. In particular, we have∫
C

1 ds = length of C.

Definition (Closed curve). A closed curve is a curve with the same start and
end point. The line integral along a closed curve is (sometimes) written as

∮
and is (sometimes) called the circulation of F around C.

Sometimes we are not that lucky and our curve is not smooth. For example,
the graph of an absolute value function is not smooth. However, often we can
break it apart into many smaller segments, each of which is smooth. Alternatively,
we can write the curve as a sum of smooth curves. We call these piecewise smooth
curves.

Definition (Piecewise smooth curve). A piecewise smooth curve is a curve
C = C1 + C2 + · · ·+ Cn with all Ci smooth with regular parametrisations. The
line integral over a piecewise smooth C is∫

C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr + · · ·+
∫
Cn

F · dr.

Example. Take the example above, and let C3 = −C2. Then C = C1 + C3 is
piecewise smooth but not smooth. Then∮

C

F · dr =

∫
C1

F · dr +

∫
C3

F · dr

=

(
e

2
+

1

4

)
− 5

3

= −17

12
+
e

2
.

13

Preview from Notesale.co.uk

Page 13 of 84



2 Curves and Line IA Vector Calculus

a

b

C1

C3

2.3 Gradients and Differentials

Recall that the line integral depends on the actual curve taken, and not just the
end points. However, for some nice functions, the integral does depend on the
end points only.

Theorem. If F = ∇f(r), then∫
C

F · dr = f(b)− f(a),

where b and a are the end points of the curve.
In particular, the line integral does not depend on the curve, but the end

points only. This is the vector counterpart of the fundamental theorem of
calculus. A special case is when C is a closed curve, then

∮
C

F · dr = 0.

Proof. Let r(u) be any parametrization of the curve, and suppose a = r(α),
b = r(β). Then ∫

C

F · dr =

∫
C

∇f · dr =

∫
∇f · dr

du
du.

So by the chain rule, this is equal to∫ β

α

d

du
(f(r(u))) du = [f(r(u))]βα = f(b)− f(a).

Definition (Conservative vector field). If F = ∇f for some f , the F is called a
conservative vector field.

The name conservative comes from mechanics, where conservative vector
fields represent conservative forces that conserve energy. This is since if the
force is conservative, then the integral (i.e. work done) about a closed curve is 0,
which means that we cannot gain energy after travelling around the loop.

It is convenient to treat differentials F · dr = Fidxi as if they were objects
by themselves, which we can integrate along curves if we feel like doing so.

Then we can define

Definition (Exact differential). A differential F · dr is exact if there is an f
such that F = ∇f . Then

df = ∇f · dr =
∂f

∂xi
dxi.

To test if this holds, we can use the necessary condition
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3 Integration in R2 and R3 IA Vector Calculus

Note that in polar coordinates, we are integrating over a rectangle and the
function is separable. So this is equal to

=
[
−e−ρ

2/2
]R

0
[ϕ]

π/2
0

=
π

2

(
1− e−R

2/2
)
. (∗)

Note that the integral exists as R→∞.
Now we take the case of x, y →∞ and consider the original integral.∫

D

f dA =

∫ ∞
x=0

∫ ∞
y=0

e−(x2+y2)/2 dx dy

=

(∫ ∞
0

e−x
2/2 dx

)(∫ ∞
0

e−y
2/2 dy

)
=
π

2

where the last line is from (*). So each of the two integrals must be
√
π/2, i.e.∫ ∞

0

e−x
2/2 dx =

√
π

2
.

3.3 Generalization to R3

We will do exactly the same thing as we just did, but with one more dimension:

Definition (Volume integral). Consider a volume V ⊆ R3 with position vector
r = (x, y, z). We approximate V by N small disjoint subsets of some simple
shape (e.g. cuboids) labelled by I, volume δVI , contained within a solid sphere
of diameter `.

Assume that as `→ 0 and N →∞, the union of the small subsets tend to
V . Then ∫

V

f(r) dV = lim
`→0

∑
I

f(r∗I)δVI ,

where r∗I is any chosen point in each small subset.

To evaluate this, we can take δVI = δxδyδz, and take δx→ 0, δy → 0 and
δz in some order. For example,∫

V

f(r) dv =

∫
D

(∫
Zxy

f(x, y, z) dz

)
dx dy.

So we integrate f(x, y, z) over z at each point (x, y), then take the integral of
that over the area containing all required (x, y).

Alternatively, we can take the area integral first, and have∫
V

f(r) dV =

∫
z

(∫
DZ

f(x, y, z) dx dy

)
dz.

Again, if we take f = 1, then we obtain the volume of V .
Often, f(r) is the density of some quantity, and is usually denoted by ρ. For

example, we might have mass density, charge density, or probability density.
ρ(r)δV is then the amount of quantity in a small volume δV at r. Then∫
V
ρ(r) dV is the total amount of quantity in V .
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4 Surfaces and surface integrals IA Vector Calculus

4 Surfaces and surface integrals

4.1 Surfaces and Normal

So far, we have learnt how to do calculus with regions of the plane or space.
What we would like to do now is to study surfaces in R3. The first thing to
figure out is how to specify surfaces. One way to specify a surface is to use an
equation. We let f be a smooth function on R3, and c be a constant. Then
f(r) = c defines a smooth surface (e.g. x2 + y2 + z2 = 1 denotes the unit sphere).

Now consider any curve r(u) on S. Then by the chain rule, if we differentiate
f(r) = c with respect to u, we obtain

d

du
[f(r(u))] = ∇f · dr

du
= 0.

This means that ∇f is always perpendicular to dr
du . Since dr

du is the tangent to
the curve, ∇f is perpendicular to the tangent. Since this is true for any curve
r(u), ∇f is perpendicular to any tangent of the surface. Therefore

Proposition. ∇f is the normal to the surface f(r) = c.

Example.

(i) Take the sphere f(r) = x2 + y2 + z2 = c for c > 0. Then ∇f = 2(x, y, z) =
2r, which is clearly normal to the sphere.

(ii) Take f(r) = x2 + y2 − z2 = c, which is a hyperboloid. Then ∇f =
2(x, y,−z).
In the special case where c = 0, we have a double cone, with a singular apex
0. Here ∇f = 0, and we cannot find a meaningful direction of normal.

Definition (Boundary). A surface S can be defined to have a boundary ∂S
consisting of a piecewise smooth curve. If we define S as in the above examples
but with the additional restriction z ≥ 0, then ∂S is the circle x2 + y2 = c, z = 0.

A surface is bounded if it can be contained in a solid sphere, unbounded
otherwise. A bounded surface with no boundary is called closed (e.g. sphere).

Example.

The boundary of a hemisphere is a circle (drawn in red).

Definition (Orientable surface). At each point, there is a unit normal n that’s
unique up to a sign.

If we can find a consistent choice of n that varies smoothly across S, then
we say S is orientable, and the choice of sign of n is called the orientation of the
surface.
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4 Surfaces and surface integrals IA Vector Calculus

The parametrizations we use will all be regular.
Given a surface, how could we, say, find its area? We can use our parametriza-

tion. Suppose points on the surface are given by r(u, v) for (u, v) ∈ D. If we
want to find the area of D itself, we would simply integrate∫

D

du dv.

However, we are just using u and v as arbitrary labels for points in the surface,
and one unit of area in D does not correspond to one unit of area in S. Instead,
suppose we produce a small rectangle in D by changing u and v by small δu, δv.
In D, this corresponds to a rectangle with vertices (u, v), (u + δu, v), (u, v +
δv), (u + δu, v + δv), and spans an area δuδv. In the surface S, these small
changes δu, δv correspond to changes ∂r

∂uδu and ∂r
∂v δv, and these span a vector

area of

δS =
∂r

∂u
× ∂r

∂v
δuδv = n δS.

Note that the order of u, v gives the choice of the sign of the unit normal.
The actual area is then given by

δS =

∣∣∣∣ ∂r

∂u
× ∂r

∂v

∣∣∣∣ δu δv.
Making these into differentials instead of deltas, we have

Proposition. The vector area element is

dS =
∂r

∂u
× ∂r

∂v
du dv.

The scalar area element is

dS =

∣∣∣∣ ∂r

∂u
× ∂r

∂v

∣∣∣∣ du dv.

By summing and taking limits, the area of S is∫
S

dS =

∫
D

∣∣∣∣ ∂r

∂u
× ∂r

∂v

∣∣∣∣du dv.

Example. Consider again the part of the sphere of radius a with 0 ≤ θ ≤ α.

α

Then we have

r(θ, ϕ) = (a cosϕ sin θ, a sin θ sinϕ, a cos θ) = aer.

So we find
∂r

∂θ
= aeθ.
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5 Geometry of curves and surfaces IA Vector Calculus

5 Geometry of curves and surfaces

Let r(s) be a curve parametrized by arclength s. Since t(s) = dr
ds is a unit vector,

t · t = 1. Differentiating yields t · t′ = 0. So t′ is a normal to the curve if t′ 6= 0.
We define the following:

Definition (Principal normal and curvature). Write t′ = κn, where n is a unit
vector and κ > 0. Then n(s) is called the principal normal and κ(s) is called
the curvature.

Note that we must be differentiating against s, not any other parametrization!
If the curve is given in another parametrization, we can either change the
parametrization or use the chain rule.

We take a curve that can Taylor expanded around s = 0. Then

r(s) = r(0) + sr′(0) +
1

2
s2r′′(0) +O(s3).

We know that r′ = t and r′′ = t′. So we have

r(s) = r(0) + st(0) +
1

2
κ(0)s2n +O(s3).

How can we interpret κ as the curvature? Suppose we want to approximate the
curve near r(0) by a circle. We would expect a more “curved” curve would be
approximated by a circle of smaller radius. So κ should be inversely proportional
to the radius of the circle. In fact, we will show that κ = 1/a, where a is the
radius of the best-fit circle.

Consider the vector equation for a circle passing through r(0) with radius a
in the plane defined by t and n.

a

r(0)
t

n θ

Then the equation of the circle is

r = r(0) + a(1− cos θ)n + a sin θt.

We can expand this to obtain

r = r(0) + aθt +
1

2
θ2an + o(θ3).

Since the arclength s = aθ, we obtain

r = r(0) + st +
1

2

1

a
s2n +O(s3).

As promised, κ = 1/a, for a the radius of the circle of best fit.
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8 Some applications of integral theorems IA Vector Calculus

a

b

C̃

C

If S is any surface with boundary ∂S = C − C̃, By Stokes’ theorem,∫
S

∇× F · dS =

∫
∂S

F · dr =

∫
C

F · dr−
∫
C̃

F · dr.

But ∇× F = 0. So ∫
C

F · dr−
∫
C̃

F · dr = 0,

or ∫
C

F · dr =

∫
C̃

F · dr.

Proposition. If (ii)
∫
C

F · dr is independent of C for fixed end points and
orientation, then (i) F = ∇f for some scalar field f .

Proof. We fix a and define f(r) =
∫
C

F(r′) · dr′ for any curve from a to r.
Assuming (ii), f is well-defined. For small changes r to r + δr, there is a small
extension of C by δC. Then

f(r + δr) =

∫
C+δC

F(r′) · dr′

=

∫
C

F · dr′ +

∫
δC

F · dr′

= f(r) + F(r) · δr + o(δr).

So
δf = f(r + δr)− f(r) = F(r) · δr + o(δr).

But the definition of grad is exactly

δf = ∇f · δr + o(δr).

So we have F = ∇f .

Note that these results assume F is defined on the whole of R3. It also
works of F is defined on a simply connected domain D, ie a subspace of R3

without holes. By definition, this means that any two curves C, C̃ with fixed
end points can be smoothly deformed into one another (alternatively, any loop
can be shrunk into a point).

If we have a smooth transformation from C to C̃, the process sweeps out a
surface bounded by C and C̃. This is required by the proof that (iii) ⇒ (ii).

If D is not simply connected, then we obtain a multi-valued f(r) on D in
general (for the proof (ii) ⇒ (i)). However, we can choose to restrict to a subset
D0 ⊆ D such that f(r) is single-valued on D0.
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9 Orthogonal curvilinear coordinates IA Vector Calculus

9 Orthogonal curvilinear coordinates

9.1 Line, area and volume elements

In this chapter, we study funny coordinate systems. A coordinate system is,
roughly speaking, a way to specify a point in space by a set of (usually 3)
numbers. We can think of this as a function r(u, v, w).

By the chain rule, we have

dr =
∂r

∂u
du+

∂r

∂v
dv +

∂r

∂w
dw

For a good parametrization,

∂r

∂u
·
(
∂r

∂v
× ∂r

∂w

)
6= 0,

i.e. ∂r
∂u ,

∂r
∂v and ∂r

∂w are linearly independent. These vectors are tangent to the
curves parametrized by u, v, w respectively when the other two are being fixed.

Even better, they should be orthogonal:

Definition (Orthogonal curvilinear coordinates). u, v, w are orthogonal curvi-
linear if the tangent vectors are orthogonal.

We can then set

∂r

∂u
= hueu,

∂r

∂v
= hvev,

∂r

∂w
= hwew,

with hu, hv, hw > 0 and eu, ev, ew form an orthonormal right-handed basis (i.e.
eu × ev = ew). Then

dr = hueu du+ hvev dv + hwew dw,

and hu, hv, hw determine the changes in length along each orthogonal direction
resulting from changes in u, v, w. Note that clearly by definition, we have

hu =

∣∣∣∣ ∂r

∂u

∣∣∣∣ .
Example.

(i) In cartesian coordinates, r(x, y, z) = x̂i + yĵ + zk̂. Then hx = hy = hz = 1,

and ex = î, ey = ĵ and ez = k̂.

(ii) In cylindrical polars, r(ρ, ϕ, z) = ρ[cosϕî + sinϕĵ] + zk̂. Then hρ = hz = 1,
and

hϕ =

∣∣∣∣ ∂r

∂ϕ

∣∣∣∣ = |(−ρ sinϕ, ρ sinϕ, 0)| = ρ.

The basis vectors eρ, eϕ, ez are as in section 1.

(iii) In spherical polars,

r(r, θ, ϕ) = r(cosϕ sin θî + sin θ sinϕĵ + cos θk̂).

Then hr = 1, hθ = r and hϕ = r sin θ.
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10 Gauss’ Law and Poisson’s equation IA Vector Calculus

The condition
∫
C

g · dr = 0 for any closed C can be re-written by Stoke’s
theorem as ∫

S

∇× g · dS = 0,

where S is bounded by the closed curve C. This is true for arbitrary S. So

∇× g = 0.

In our example above, ∇×g = 0 due to spherical symmetry. But here we showed
that it is true for all cases.

Note that we exploited symmetry to solve Gauss’ law. However, if the mass
distribution is not sufficiently symmetrical, Gauss’ law in integral form can be
difficult to use. But we can rewrite it in differential form. Suppose

M =

∫
V

ρ(r) dV,

where ρ is the mass density. Then by Gauss’ theorem∫
S

g · dS = −4πGM ⇒
∫
V

∇ · g dV =

∫
V

−4πGρ dV.

Since this is true for all V , we must have

Law (Gauss’ Law for gravitation in differential form).

∇ · g = −4πGρ.

Since ∇ × g = 0, we can introduce a gravitational potential ϕ(r) with
g = −∇ϕ. Then Gauss’ Law becomes

∇2ϕ = 4πGρ.

In the example with spherical symmetry, we can solve that

ϕ(r) = −GM
r

for r > a.

10.2 Laws of electrostatics

Consider a distribution of electric charge at rest. They produce a force on a
charge q, at rest at r, which is proportional to q.

Definition (Electric field). The force produced by electric charges on another
charge q is F = qE(r), where E(r) is the electric field, or force per unit charge.

Again, this is conservative. So∮
C

E · dr = 0

for any closed curve C. It also obeys
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11 Laplace’s and Poisson’s equations IA Vector Calculus

In words, this says that the value at the center of a sphere is the average of
the values on the surface on the sphere.

Proof. Note that ϕ̄(R)→ ϕ(a) as R→ 0. We take spherical coordinates (u, θ, χ)
centered on r = a. The scalar element (when u = R) on SR is

dS = R2 sin θ dθ dχ.

So dS
R2 is independent of R. Write

ϕ̄(R) =
1

4π

∫
ϕ

dS

R2
.

Differentiate this with respect to R, noting that dS/R2 is independent of R.
Then we obtain

d

dR
ϕ̄(R) =

1

4πR2

∫
∂ϕ

∂u

∣∣∣∣
u=R

dS

But
∂ϕ

∂u
= eu · ∇ϕ = n · ∇ϕ =

∂ϕ

∂n

on SR. So

d

dR
ϕ̄(R) =

1

4πR2

∫
SR

∇ϕ · dS =
1

4πR2

∫
VR

∇2ϕ dV = 0

by divergence theorem. So ϕ̄(R) does not depend on R, and the result follows.

11.2.2 The maximum (or minimum) principle

In this section, we will talk about maxima of functions. It should be clear that
the results also hold for minima.

Definition (Local maximum). We say that ϕ(r) has a local maximum at a if
for some ε > 0, ϕ(r) < ϕ(a) when 0 < |r− a| < ε.

Proposition (Maximum principle). If a function ϕ is harmonic on a region V ,
then ϕ cannot have a maximum at an interior point of a of V .

Proof. Suppose that ϕ had a local maximum at a in the interior. Then there is
an ε such that for any r such that 0 < |r− a| < ε, we have ϕ(r) < ϕ(a).

Note that if there is an ε that works, then any smaller ε will work. Pick an ε
sufficiently small such that the region |r− a| < ε lies within V (possible since a
lies in the interior of V ).

Then for any r such that |r− a| = ε, we have ϕ(r) < ϕ(a).

ϕ̄(ε) =
1

4πR2

∫
SR

ϕ(r) dS < ϕ(a),

which contradicts the mean value property.

We can understand this by performing a local analysis of stationary points
by differentiation. Suppose at r = a, we have ∇ϕ = 0. Let the eigenvalues of the

Hessian matrix Hij = ∂2

∂xi∂xj
be λi. But since ϕ is harmonic, we have ∇2ϕ = 0,
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12 Maxwell’s equations IA Vector Calculus

12 Maxwell’s equations

12.1 Laws of electromagnetism

Maxwell’s equations are a set of four equations that describe the behaviours
of electromagnetism. Together with the Lorentz force law, these describe all
we know about (classical) electromagnetism. All other results we know are
simply mathematical consequences of these equations. It is thus important to
understand the mathematical properties of these equations.

To begin with, there are two fields that govern electromagnetism, known
as the electric and magnetic field. These are denoted by E(r, t) and B(r, t)
respectively.

To understand electromagnetism, we need to understand how these fields
are formed, and how these fields affect charged particles. The second is rather
straightforward, and is given by the Lorentz force law.

Law (Lorentz force law). A point charge q experiences a force of

F = q(E + ṙ×B).

The dynamics of the field itself is governed by Maxwell’s equations. To state
the equations, we need to introduce two more concepts.

Definition (Charge and current density). ρ(r, t) is the charge density, defined
as the charge per unit volume.

j(r, t) is the current density, defined as the electric current per unit area of
cross section.

Then Maxwell’s equations say

Law (Maxwell’s equations).

∇ ·E =
ρ

ε0

∇ ·B = 0

∇×E +
∂B

∂t
= 0

∇×B− µ0ε0
∂E

∂t
= µ0j,

where ε0 is the electric constant (permittivity of free space) and µ0 is the
magnetic constant (permeability of free space), which are constants determined
experimentally.

We can quickly derive some properties we know from these four equations.
The conservation of electric charge comes from taking the divergence of the last
equation.

∇ · (∇×B)︸ ︷︷ ︸
=0

−µ0ε0
∂

∂t
(∇ ·E)︸ ︷︷ ︸
=ρ/ε0

= µ0∇ · j.

So
∂ρ

∂t
+∇ · j = 0.
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12 Maxwell’s equations IA Vector Calculus

We can also take the volume integral of the first equation to obtain∫
V

∇ ·E dV =
1

ε0

∫
V

ρ dV =
Q

ε0
.

By the divergence theorem, we have∫
S

E · dS =
Q

ε0
,

which is Gauss’ law for electric fields
We can integrate the second equation to obtain∫

S

B · dS = 0.

This roughly states that there are no “magnetic charges”.
The remaining Maxwell’s equations also have integral forms. For example,∫

C=∂S

E · dr =

∫
S

∇×E dS = − d

dt

∫
S

B · dS,

where the first equality is from from Stoke’s theorem. This says that a changing
magnetic field produces a current.

12.2 Static charges and steady currents

If ρ, j,E,B are all independent of time, E and B are no longer linked.
We can solve the equations for electric fields:

∇ ·E = ρ/ε0

∇×E = 0

Second equation gives E = −∇ϕ. Substituting into first gives ∇2ϕ = −ρ/ε0.
The equations for the magnetic field are

∇ ·B = 0

∇×B = µ0j

First equation gives B = ∇ ×A for some vector potential A. But the vector
potential is not well-defined. Making the transformation A 7→ A + ∇χ(x)
produces the same B, since ∇× (∇χ) = 0. So choose χ such that ∇ ·A = 0.
Then

∇2A = ∇(∇ ·A︸ ︷︷ ︸
=0

)−∇× (∇×A︸ ︷︷ ︸
B

) = −µ0j.

In summary, we have

Electrostatics Magnetostatics

∇ ·E = ρ/ε0 ∇ ·B = 0
∇×E = 0 ∇×B = µ0j
∇2ϕ = −ρ/ε0 ∇2A = −µ0j.
ε0 sets the scale of electrostatic effects,
e.g. the Coulomb force

µ0 sets the scale of magnetic effects,
e.g. force between two wires with cur-
rents.
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14 Tensors of rank 2 IA Vector Calculus

x1

x3

x2

2`

a

Use cylindrical polar coordinates:

x1 = r cos θ

x2 = r sin θ

x3 = x3

dV = r dr dθ dx3

We have

I33 =

∫
V

ρ0(x2
1 + x2

2) dV

= ρ0

∫ a

0

∫ 2π

0

∫ `

−`
r2(r dr dθ dx2)

= ρ0 · 2π · 2`
[
r4

4

]a
0

= ε0π`a
4.

Similarly, we have

I11 =

∫
V

ρ0(x2
2 + x2

3) dV

= ρ0

∫ a

0

∫ 2π

0

∫ `

−`
(r2 sin2 θ + x2

3)r dr dθ dx3

= ρ0

∫ a

0

∫ 2π

0

r

(
r2 sin2 θ [x3]

`
−` +

[
x3

3

3

]`
−`

)
dθ dr

= ρ0

∫ a

0

∫ 2π

0

r

(
r2 sin2 θ2`+

2

3
`3
)

dθ dr

= ρ0

(
2πa · 2

3
`3 + 2`

∫ a

0

r2 dr

∫ 2π

0

sin2 θ

)
= ρ0πa

2`

(
a2

2
+

2

3
`2
)

By symmetry, the result for I22 is the same.

79

Preview from Notesale.co.uk

Page 79 of 84


