• Electronegativity = power of atom to attract pair of electrons in a covalent bond, more electronegative to top right

-> down group, electronegativity decreases = atomic radius increases, more shielding -> less electrostatic attraction -> period, electronegativity increases = atomic radius decreases, increased nuclear charge, more electrostatic attraction

- Non polar covalent bond elements w identical electronegativities = equal sharing of electrons
- e- shared unequally between elements w different electronegativities leads to partial charges + polar covalent bond
- In a non polar molecule polar bonds cancel each other out = usually linear, tetrahedral, octahedral

3.1.3.7 Forces between molecules

- IM forces forces of attraction between molecules, boiling points influenced by strength of IM forces
- Dipole-dipole interactions between polar molecules, attraction between atoms of opposing electronegativity
- Distribution of e- in atom constantly changes leading to dipole in non-polar molecules

-> distorts e- of neighbouring atoms - induced dipole forces

-> attraction between induced and temporary dipole = Van der Waals forces found between all molecules

- More e- = more SA, more chances of instantaneous dipole, larger dipole, more attraction, more energy to break
- Hydrogen bonding large difference in electronegativity, creates dipole, between H+ and lone pair e- on F / O / N

3.1.4. Energetics

3.1.4.1Enthalpy Change Reactions don't occur spontaneously as atoms need to collide with sufficient energy

- Exothermic increase in temperature, combustion, making bonds, more energy released than supplied
- Endothermic decrease in temperature, absorb energy from environment, more energy supplied, breaking bonds
- Enthalpy change ^H = heat energy change measured under standard conditions 298K and 100kPa
- Enthalpy of combustion = enthalpy change when mole of substance burnt completely in O2 standard conditions
- Enthalpy of formation = enthalpy change when mole of substance formed from its elements standard conditions

3.1.4.2 Calorimetry

- $Q = mc^T + ^H = q/mol$ Energy given out (kJ) / limiting moles of reactant (m1) C
- Enthalpy changes experimentally = combusting known mass fuel + using plants with out to raise temperature of water
- Assumptions = 100% J transfer, density 1, solid doesn't change association of fuel or water
- Polystyrene cup = good insulator, prevents beat loss give

-> adding lid helps reduce heat loss / makes transera use measurement difficult so a lding more insulation is a solution -> adding reactants quickly, as a portee with higher surface area, st filling chemicals = allow maximum temperature change 3.1.4.3 Hess's law Application of conservation of energy

- That Phage at constant press report at ions independent of route taken + depends on initial and final states
- Enthalpies of formation = enthal y formation products reactants
- Enthalpies of combustion = enthalpy combustion reactants products

3.1.4.4 Bond enthalpies – enthalpies of all elements in standard states is zero

- Mean bond enthalpy change required to break one mole of covalent bonds averaged over a range of compounds
- Enthalpy change = energy required to break bonds in reactants energy required to make bonds in products

3.1.5 Kinetics

3.1.5.1 Collision theory - particles must collide in correct orientation w enough KE to overcome specific activation energy

- Collision energy combined energy of colliding particles, changed by temperature
- Collision frequency collisions between particles per second, changed by pressure / vol. / conc. / temp.
- Activation energy minimum amount of energy required for reaction to occur, changed by catalyst

3.1.5.2. Maxwell–Boltzmann distribution – of molecular energies in gases

- Energy v. Number of particles w Energy graph, Emp = most probable energy, area under graph is number of particles
- No particles have zero energy, there is a probable energy for particles in the gas, small number have high energies
- Majority of particles don't have enough activation energy to successfully react i.e. lower than activation energy
- Catalyst = provides alternative reaction pathway with lower activation energy but chemically unchanged
- Temperature increase increased particles exceeding Ea, more successful collisions increases rate, same total

3.1.5.3 Effect of temperature on reaction rate

- Rate of reaction change in concentration of a substance per unit time
- Faster reaction with increase more kinetic energy, increased collision energy / frequency / successful collisions

3.1.5.4 Effect of concentration and pressure

- Pressure / conc. faster reaction w increase, particles closer together, increased collisions so more successful **3.1.5.5 Catalysts**
 - Substance that increases rate of chemical reaction without being changed in chemical composition or amount

2nd Electron affinity – enthalpy change when n. of –1 gaseous ions gains an electron per ion to form –2 gaseous ions -ENDOTHERMIC as energy is required to overcome the repulsive forces between the negative ion and electron

Some trends

- Atomisation of metals metal with the weaker metallic bonding has a more endothermic atomisation
- 1st electron affinity becomes more exothermic down a group due to more shielding and more repulsion from e-
- Lattice formation more exothermic w smaller atomic radii = larger charge density = stronger electrostatic attraction
- Enthalpy of hydration less exothermic as ionic radius increases as lower charge density so weaker attraction
- In organic molecules solubility decreases as chain length increases because more VdW forces have to be overcome Experimental value is more exothermic
 - Indication that there are more and stronger bonds than only the ionic bonds involved
 - Theoretical value assumes perfect ionic model ions are spherical, and attraction is purely electrostatic
 - Covalent character unconsidered higher charge density of cation to anion causes anion to polarise •
- Tendency for covalent character when: 1. Small cation 2. Multiple charges of cation / anion 3. Large anion Enthalpy of solution – enthalpy change when n of ionic solid dissolves in enough water to separate into ions that don't interact Enthalpy of hydration - enthalpy change when one mole of gaseous ions become hydrated

Dissolving a solid

- Endothermic - ions are separated to release them from crystal lattice or to overcome the IMF between molecules
- Exothermic ions or molecules forming bonds with the polar water molecules
- Polar ends of water molecules are attracted to the cations and anions in the ionic lattice which disrupts the lattice

3.1.8.2 Free Gibbs energy and entropy change

- ΔS / entropy is a measure of disorder of the system, the more the disorder the more positive the equilation of the system.
- Total ΔS = total ΔS of products ΔS of reactants, measured in J/K/mol so needs to be conv
- Entropy increases from s -> I -> g due to decreasing IMF and increases when
- Entropy decreases when ionic solid lattice dissolves as ions dissociated ess order
- Entropy increases as temperature increases because more energy so have more disorder •
- There is a larger entropy change during boiling that •
- Balance between entropy and entral by differnines feasibility of a reaction by: $\Delta G = \Delta H T\Delta S => \Delta G = (-\Delta S) T + \Delta H$ When $\Delta G = 0$ the minimum temperature can be four patient of the reaction takes place ٠
- .
- For a reaction to the reactive, the value of AG must be zero or negative
- te arc Naction with positi 😳 🕫 🗸 🕫 nge – always feasible E) D
- Exothermic reaction with negative entropy change feasible at low temperatures
- Endothermic reaction with positive entropy change feasible at high temperatures
- Endothermic reaction with negative entropy change never feasible

3.1.9 Rate Equations

3.1.9.1 Rate equations

- Rate of reaction dependent on temperature, surface area, catalyst, pressure and concentration of reactants •
- Rate of a chemical reaction is related to reactant concentration by rate equation: Rate = k[A]m [B]n

m and n are the orders of reaction = determined experimentally, restricted to 0/1/2, how concentration affects rate

- 0^{th} order = rate of reaction not affected by the reactant's concentration, it does not appear in the rate equation •
- 1st order = rate of reaction is proportional to the concentration of the reactant
- 2^{nd} order = rate of reaction is directly proportional to the concentration of the reactant squared
- Overall reaction order sum of orders of the reactants that appear in the rate equation
- To work out reaction orders use experimental data and compare when one reactant has been changed
- k is the rate constant, varies with temperature, increases with temperature, units calculated from rate equation A / B are the reactants, concentrations measured in mol/dm^3 are inserted into the rate equation

1. k = Ae^-Ea/RT where A is the Arrhenius constant, Ea is the activation energy and T is the temperature in K When temperature increases, -Ea/RT becomes smaller so becomes less negative so k becomes bigger \

- Lnk = InA Ea/RT therefore the graph equation -> Ink = -Ea/R * 1/T + InA
 - 2. Draw graph of Ink against 1/T, don't start at 0 but just before the data point
 - 3. Look at data and calculate the range, count the number of squares given on the graph, range / squares = scale
- 6 marker experimental plan measure 4 or 5 T, look up R, measure or deduce the rate to find the rate constant 4.

3.1.9.2 Determination of rate equation

Experimentally determined relationship - $^{rate} = k ^{[X]} ^{[Y]}$

Development over time

- 19th century artificial polymers such as artificial silk and hard rubber synthesised
- 20th century further developments -> Kevlar and Nylon synthesised
- Developments still being made for cheaper production and better function

Polymer name	Everyday name	Uses
Polyethene	Polythene	LDPE
		• Loosely packed due to branching = small SA, less area of contact = weak Van der Waal forces
		 Flexible, soft, low melting point = bags / cling film HDPE
		• Tightly packed = big SA, more area of contact = strong Van der Waals forces
		• Stiffer, stronger, rigid, high melting point = bottles
Polychloroethene	PVC	Window frames
		Strong but brittle
		Polar covalent bonds between C and Cl
		• Permanent dipole forces between molecules = strong
		Brittle = like charges repel as chains come together

3.3.5 Alcohols

3.3.5.1 Alcohol production

Electrophilic addition of sulfuric acid to ethene and then hydrolysis

Produced industrially by hydration of alkenes with conc. phosphoric acid catalyst, 300 – 600 degrees, 70atm Produced industrially by fermentation of glucose, yeast, no air, 30 – 40 degrees

• Ethanol produced by fermentation separated by fractional distillation = biofiel _ sark in nucral, 6 moles CO2 taken in, 2 moles produced / 4 moles after burning – however energy for transport in 2 migation not taken into account

Hydration		
Advantages	U	Advantages
Faster, purer product, continuents, race s		Supartise enewable and low-level technology
Disadvantages		D sa Nantages
 High tech e a plant and ethene is non-renevable 		Slow batch process and depletes land for crops
High reny costs to maintain high resources		 Impure ethanol needs purification by distillation

3.3.5.2 C viation of Alcohols – hot wat viation of bunsen burner as highly flammable

- Classified as primary, secondary and tertiary oxidation dependent on number of C-H bonds / available bonds
- Primary alcohols can be oxidised to aldehydes (H-C=O heat + distilled) which can be further oxidised to carboxylic acids (heat under reflux, change the position of the condenser = vertical)
- Boiling points carboxylic acid > primary alcohol > aldehyde carboxylic has two polar bonds for hydrogen bonding
- Secondary alcohols can be oxidised to ketones O=C, tertiary alcohols are not oxidised
- Acidified potassium dichromate (VI) and dilute sulfuric acid = orange dichromate ion reduces to green chromium ion
- [0] to produce mole of water, add 2 before the symbol for oxidation of aldehyde to carboxylic acid

3.3.5.3 Elimination – dehydration = water removal

- Alkene produced, concentrated H2SO4 used as a catalyst, heat under reflux
- Neighbouring carbon atoms must have H groups attached varying number = more than one isomeric product
- 1.Lone pair on O donated to H+ 2. e- in bond donated to O+ 3. Water removed 4. e- from H to C 5. H+ removed
- Alkenes produced = addition polymers without using monomers derived from crude oil

3.3.6 Organic analysis

3.3.6.1 Identification of functional groups by test-tube reactions

- Alcohol potassium dichromate turns green from orange for primary and secondary alcohols
- Aldehyde can be further oxidised, reducing agent so property used to distinguish aldehydes from ketones

Fehling's – red precipitate for aldehyde, Cu2+ blue solution forms Cu2O red precipitate

Tollen's – 1. 2AgNO3 + NaOH -> Ag2O + 2NaNO3 +H2O 2. 4NH3 + Ag2O -> 2[Ag(NH3)2]+ , silver mirror

- Carboxylic acid solid sodium hydrogencarbonate in test tube added to acid for effervescence
- Alkene aqueous bromine water changes colour from orange to colourless

3.3.6.2 Mass Spectrometry

• Used to determine molecular formula of a compound

- Molecular ion then fragments into cation + free radical ٠
- Higher Mr than actual molecule has low % abundance and can be ignored
- High resolution used to determine molecular formula of compound from accurate mass of molecular ion (5 d.p.)
- Relative intensity of molecular ions depending on the ratio of isotopes present in the atmosphere

3.3.6.3 Infrared Spectroscopy - Shows what bonds are present / absent in molecule to suggest functional groups Bonds have unique frequency, absorb same frequency so radiation emerging has missing frequencies of the bonds in sample

- Frequency depends on atom mass in bond, bond strength, vibration – symmetrical / asymmetrical stretch or bend
- 'Fingerprinting' allows identification of a molecule by comparison of spectra unique for each compound
- O-H broad peak in alcohols (3230-3550), acid very broad / jagged (2500-3000) •
- C=O aldehyde / ester / ketone / carboxylic acid sharp, strong, almost 0 transmission (1680-1750) ٠
- CO2 / CH4 bonds absorb + re-emit IR -> increases temperature of planet = greenhouse gases -> warm earth for life

More CO2 - more re-emission of IR so mean temperature is rising = global warming

Peak at ..., bond ... is present, there is not a peak in the range ..., bond ... is not present, suggests it is ...

3.3.7 Optical isomerism – stereoisomerism and occurs as a result of chirality in molecules in molecules with single chiral centre Asymmetric C atom is chiral and gives rise to optical isomers known as enantiomers = 4 different groups bonded to it

Enantiomers = non-super imposable mirror images that differ in their effect on plane polarised light

Same physical properties

Each rotates plane polarised light in different directions – clockwise / anti-clockwise = determined experimentally Racemic mixture / racemate - a mixture of equal amounts of enantiomers

Plane polarised light unaffected by racemate / would rotate by an enantiopure sample • Many drugs sold are enantiopure and they work by binding to amino acid receptors in the body Amino acids are chiral / our bodies are enantiopure = beneficial as small doses are required for drug to be 3.3.8 Aldehydes and ketones

- Carbonyl is the functional group C=O planar bond, aldehydes are reading into carboxylic acids
- Aldehyde the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the C dai to the carbonyl group is at the end of the carbonyl group is at the c chain bonyl group is within the C chain •
- Fehlings solution blue solution to red precipitate to supervise only, Tollers silver mirror for aldehyde

Nucleophilic addition reactions – attraction to partia positive C atom, combines with another molecule to form larger one Cyanide ions – produces hydroxynitrie produces that are isomeric products

- i cyanide ions as postial dissourcion, in alkaline re inimical langer (Sector cupboard and wear gloves tion, in alkaline reflux to shift eqbm to the right, gaseous at HCN – low concernedit
- e, to minimize laro r IS

KCN and H2SO4 – acidic reflux as a Sorce i protons, soluble cyanide salt – high concentration of cyanide ions Racemic mixture formed after nucleophilic addition: planar C=O group, attacked from either side, with equal probability Aldehydes can be reduced to primary alcohols, and ketones to secondary alcohols, using NaBH4 in aqueous solution

2[H] - aqueous alcoholic solution, nucleophilic addition where H- acts as the nucleophile

Hydrogen acts as a reducing agent, Pt / Ni acts as a catalyst -> makes an alcohol (can reduce C=C / C=O)

3.3.9 Carboxylic acids and derivatives

3.3.9.1 Carboxylic acids and esters

Carboxylic acids - weak acids but liberate CO2 from carbonates

- Carboxylate ions negative charge is shared over the whole of the carboxylate group
- Form 2 H bonds per molecule = dimer with larger VdW forces between molecules = more energy to overcome forces Carboxylic acid + base -> salt + water

Carboxylic acid + carbonate -> salt + water + carbon dioxide

Esters – carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters

- ٠ Common uses of esters: in solvents, plasticisers, perfumes and food flavourings
- Molecules with one hydroxy and one carboxyl group on either end can self-esterify to form a cyclic ester
- Vegetable oils and animal fats are esters of propane-1,2,3-triol

Saturated fats – regular, fit neatly together so bigger SA, stronger VdW forces, higher m.p, solid at room temperature Unsaturated fats – don't fit neatly, smaller SA, weaker VdW forces, lower m.p, liquid at room temperature

Hydrolysis of esters under acidic and alkaline conditions

Acidic - ester + water <-> carboxylic acid + alcohol (reversible reaction that goes to completion w acid catalyst under reflux) Alkaline – ester + NaOH <-> carboxylate ion + alcohol (non-reversible, carboxylate ion can react w acid to form carboxylic acid)

Vegetable oils / fats hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) + glycerol

Fat / oil + 3NaOH -> glycerol + 3 sodium salts