Note : LUB of a bounded above set may or may not be a member of the set. If it does, it is the maximum element of the set.

10. Completeness Axiom: Every non-empty bounded above set of real numbers has its LUB in \mathbb{R} .

Example: Let $A = \{x \in \mathbb{Q} : x > 0 \land x^2 < 2\}$

 $\therefore x \in A \Rightarrow x > 0 \land x^2 < 2 \Rightarrow 0 < x < \sqrt{2}$. Thus A is a non-empty bounded above set of real numbers.

By Completeness Axiom, $\sup A \in \mathbb{R}$. Let $\sup A = u$. We show that $u \notin \mathbb{Q}$.

If possible let $u \in \mathbb{Q}$. Then u > 0 and $u \leq \sqrt{2}$ and $u \in \mathbb{Q} \Rightarrow 0 < u < \sqrt{2}$. [since $\sqrt{2}$ is irrational]

Let
$$v = \frac{4+3u}{3+2u}$$
. Then $v > 0$ and $v \in \mathbb{Q}$
 $v - u = \frac{4+3u}{3+2u} - u = \frac{4-2u^2}{3+2u} = \frac{2(2-u^2)}{3+2u} > 0 \Rightarrow v > u$
Also, $v^2 - 2 = \frac{16+24u+9u^2}{9+12u+4u^2} - 2 = \frac{u^2-2}{(3+2u)^2} < 0 \Rightarrow v^2 < 2$

Thus $v \in A$ which contradicts the fact that $u = \sup A$. Here u

Remark: The above example shows that the supremum of a set of rational numbers may not be rational. Thus Completeness Arion Lon Axiom does not hold for \mathbb{Q} . Therefore \mathbb{R} is a complete ordered field and \mathbb{Q} is an incomplete ordered field.

11. Archimedean Property of Real Numbers

There are two ways to state the Archimedean property

(a) The set \mathbb{N} of natural numbers is unbounded above. Proof: $\mathbb{N} \neq \emptyset, N \subset \mathbb{R}$.

If possible, let $\mathbb N$ be bounded above. Thus by LUB Axiom, $\sup \mathbb N \in \mathbb R.$ Let $\sup \mathbb N = \mu$ Then

i. $n \leq \mu \ \forall n \in \mathbb{N}$

ii. corresponding to $\varepsilon = 1$, $\exists p \in \mathbb{N}$ suc that $p > \mu - 1 \Rightarrow p + 1 > \mu$ and $p + 1 \in \mathbb{N}$ This contradicts the fact that $\mu = \sup \mathbb{N}$. Hence \mathbb{N} is unbounded above.

(b) (EQUIVALENT STATEMENT): If x, y ∈ R and x > 0, then ∃n ∈ N such that nx > y. Proof: If y ≤ 0 then n = 1 serves the purpose. Let us assume that y > 0. If possible let nx ≤ y ∀n ∈ N. Then the set S = {nx : n ∈ N} is a non-empty bounded above subset of R, y being an upper bound. By the LUB axiom, sup S exist in R. Let sup S = u. Then