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PERMUTATION GROUPS 

DEFINITION 1: Let S be a finite set. Any bijective mapping from S onto itself is called a 

PERMUTATION on S. 

 Let f be a permutation on a set  naaaS ,.....,, 21 . Then f is denoted by 
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NOTE 1: The number of permutations on a finite set S with n elements is n!. 

      The identity mapping on S is known as the identity permutation. 

EXAMPLE 1: Let  3,2,1S . Then the set of all permutations on S is 
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DEFINITION 2: Let f, g be permutations on  naaaS ,.....,, 21 . Then we define the 

product fg by 
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NOTE 2: The multiplication of permutations is nothing but composition of two bijective 

mappings on a set. 

REMARK 1: We know that composition of mappings is not, in general, commutative. As a 

result, multiplication of permutations is not, in general, commutative. For example, on the set
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