and $b = h_2^{-1}(h_1 a) = (h_2^{-1} h_1)a = h_4 a$, where $h_4 = h_2^{-1} h_1 \in H$ (as *H* is a subgroup of *G*).

Now $p \in Ha \implies p = h_5 a$, where $h_5 \in H$

 $\Rightarrow p = h_5 h_3 b = h_6 b \in Hb$ [since *H* being a subgroup of *G*, $h_6 = h_5 h_3 \in H$]

So, $Ha \subset Hb$(1)

Again, $q \in Hb \Rightarrow q = h_7b$, where $h_7 \in H$

 $\Rightarrow q = h_7 h_4 a = h_8 a \in Ha$ [since H being a subgroup of G, $h_8 = h_7 h_4 \in H$]

So, $Hb \subseteq Ha$(2)

By (1) and (2),
$$Ha = Hb$$
.

Hence the result is proved.

PROOF: Try yourself. THEOREM 3A: Let *H* be a subgroup of a group *G*. For *a*, $b \in G$, aH = bH if and only if $a^{-1}b \in H$. **THEOREM 2B:** Let H be a subgroup of a group G. Then, any two left cosets of A in G are

PROOF: Let us first assume that $a^{-1}b \in H$. Let $a^{-1}b = h \in H$.

Then $b = ah \in aH$. Also, $b = be \in bH$ ['e' is identity element of G].

So, $aH \cap bH \neq \emptyset$. Hence by **THEOREM 2B**, aH = bH. [**TO BE PROVED IN EXAM**]

Conversely let aH = bH. Then $\exists h_1, h_2 \in H$ such that $ah_1 = bh_2$. Therefore, $a^{-1}b = h_1h_2^{-1} \in H$. [Since *H* is a subgroup of *G*]

THEOREM 3B: Let H be a subgroup of a group G. For $a, b \in G$, Ha = Hb if and only if $ba^{-1} \in H$.

PROOF: Try yourself.