Mathematic

(Chapter – 4) (Quadratic Equations) (Class X)

Exercise 4.1

Question 1:

Check whether the following are quadratic equations:

 $(x+1)^2 = 2(x-3)$ (i) (ii) $x^2 - 2x = (-2)(3 - x)$ (iii) (x-2)(x+1) = (x-1)(x+3)(iv) (x-3)(2x+1) = x(x+5)(v) (2x-1)(x-3) = (x+5)(x-1) (vi) $x^2 + 3x + 1 = (x-2)^2$ (viii) $x^3 - 4x^2 - x + 1 = (x - 2)^3$ (vii) $(x+2)^3 = 2x(x^2-1)$ Answer 1: $(x+1)^{2} = 2(x-3) \Rightarrow x^{2} + 2x + 1 = 2x - 6 \Rightarrow x^{2} + 7 = 0$ (i) It is of the form $ax^2 + bx + c = 0$. Hence, the given equation is a guadratic equation. Hence, the given equation is a quadratic equation. (iii) $(x-2)(x+1)=(x-1)(x+3)(x-2)^2$ It is not of the prove $ax^2 + bx + c = 0$ Here to given equation a quadratic equation. (iv) $(x-3)(2x+1) = x(x+5) \Rightarrow 2x^2 - 5x - 3 = x^2 + 5x \Rightarrow x^2 - 10x - 3 = 0$ It is of the form $ax^2 + bx + c = 0$. Hence, the given equation is a quadratic equation. $(2x-1)(x-3) = (x+5)(x-1) \Rightarrow 2x^2 - 7x + 3 = x^2 + 4x - 5 \Rightarrow x^2 - 11x + 8 = 0$ (v)

It is of the form $ax^2 + bx + c = 0$.

Hence, the given equation is a quadratic equation.

(vi)
$$x^{2} + 3x + 1 = (x - 2)^{2} \Rightarrow x^{2} + 3x + 1 = x^{2} + 4 - 4x \Rightarrow 7x - 3 = 0$$

It is not of the form $ax^2 + bx + c = 0$.

Hence, the given equation is not a quadratic equation.

 $2x^2 + x - 4 = 0$ (ii) $\Rightarrow 2x^2 + x = 4$ On dividing both sides of the equation by 2, we obtain $\Rightarrow x^2 + \frac{1}{2}x = 2$ On adding $\left(\frac{1}{4}\right)^2$ to both sides of the equation, we obtain $\Rightarrow (x)^{2} + 2 \times x \times \frac{1}{4} + \left(\frac{1}{4}\right)^{2} = 2 + \left(\frac{1}{4}\right)^{2}$ $\Rightarrow \left(x + \frac{1}{4}\right)^2 = \frac{33}{16}$ $\Rightarrow x = \frac{\pm\sqrt{33}-1}{4} \text{ from Notesale.co.uk}$ $\Rightarrow x = \frac{\pm\sqrt{33}-1}{4} \text{ from Notesale.co.uk}$ $= \frac{4}{4} \frac{4}{4} \text{ or } \frac{4}{4} \frac{9}{4} \text{ or } \frac{1}{4} \frac{9}{4} \frac{$ $\Rightarrow x + \frac{1}{4} = \pm \frac{\sqrt{33}}{4}$ (iii) $4x^2 + 4\sqrt{3}x + 3 = 0$ $\Rightarrow (2x)^2 + 2 \times 2x \times \sqrt{3} + (\sqrt{3})^2 = 0$ $\Rightarrow \left(2x + \sqrt{3}\right)^2 = 0$

$$\Rightarrow (2x + \sqrt{3}) = 0 \text{ and } (2x + \sqrt{3}) = 0$$
$$\Rightarrow x = \frac{-\sqrt{3}}{2} \text{ and } x = \frac{-\sqrt{3}}{2}$$

Answer 2:

We know that if an equation $ax^2 + bx + c = 0$ has two equal roots, its discriminant $(b^2 - 4ac)$ will be 0. (i) $2x^2 + kx + 3 = 0$ Comparing equation with $ax^2 + bx + c = 0$, we obtain a = 2, b = k, c = 3Discriminant = $b^2 - 4ac = (k)^2 - 4(2)(3) = k^2 - 24$ For equal roots, Discriminant = 0 $k^2 - 24 = 0$ $k^2 = 24$ Notesale.co.uk $k = \pm \sqrt{24} = \pm 2\sqrt{6}$ (ii) kx(x-2) + 6 = 0or $kx^2 - 2kx + 6 = 0$ $74^{-10x} + c = 0, 2^{-10x}$ Comparing this equation with we obtain a = 100 N - 2k, c Dispriminant = $b^2 - 4a^2 - 4k^2 - 4(k)(6) = 4k^2 - 24k$ For equal roots, $b^2 - 4ac = 0$ $4k^2 - 24k = 0$ 4k(k-6)=0Either 4k = 0 or k = 6 = 0k = 0 or k = 6However, if k = 0, then the equation will not have the terms ' $x^{2'}$ and `х'.

Therefore, if this equation has two equal roots, k should be 6 only.

Comparing this equation with $al^2 + bl + c = 0$, we obtain a = 1, b = -40, c = 400Discriminate = $b^2 - 4ac = (-40)^2 - 4(1)(400) = 1600 - 1600 = 0$ As $b^2 - 4ac = 0$,

Therefore, this equation has equal real roots. And hence, this situation is possible.

Root of this equation,

$$l = -\frac{b}{2a}$$
$$l = -\frac{(-40)}{2(1)} = \frac{40}{2} = 20$$

Therefore, length of park, l = 20 m

Preview from Notesale.co.uk page 27 of 27 And breadth of park, b = 40 - 1 = 40 - 20 = 20 m