AMOUNT OF SUBSTANCE

Cue	Notes		
Calculating volumes	volume $(cm^3) = number of moles \times 1000$		
	concentration		
Empirical formula	The simplest whole number ratio of atoms of each element in a compound		
Molecular formula	Gives the actual numbers of atoms in a molecule		
How to calculate	-Find the empirical mass - (add up the relative atomic mass values of all the		
molecular formula	atoms in the empirical formula		
given empirical formula	-Divide the relative molecular mass by the empirical mass		
and the relative	-Multiply the empirical formula by that number to find the molecular formula.		
molecular mass			
Calculating empirical	-Assume you've got 100g of the compound - turn percentages straight into		
formulas from the	masses, then work out how many moles of each element are in 100g of the		
percentages of different	compound		
elements	-Divide each number of moles by the smallest number of moles you found in		
	step 1, this gives the ratio of elements in the compound.		
	-Apply the numbers from the ratio to the formula		
How to calculate	-Work out how many moles of reactant you have		
theoretical yield	-Use the equation to work out how many moles of product you would expect		
	that much reactant to make		
	-Calculate the mass of that many moles of product		
Calculating percentage	Actual Yield		
yield	Percentage Yield = $\frac{1}{\text{Theoretical Yield}} \times 100$		
How to calculate mass	-Write out the balanced equation for the reaction		
	-Work out now many moles of the reactant you have		
	-Use the molar ratio from in training dequation to work out the number of		
	moles of product that will be formed from the much reactant		
Define store second	- La cui it the mass of the mary in less of product		
Define atom economy	nort of the balanced wet (rother than by products) in the balanced		
Plet	chemics equation		
Advantages of high	Economic advantages will make more efficient use of its raw materials also		
atom aconomy	-Economic advantages – will make more encient use of its faw materials, also		
atom economy	Tess waste to used with.		
	-Environmental and ethical advantages – Processes that use rewer raw		
	materials and produce less waste are better for the environment, and more		
Calculating atom			
	% atom aconomy - molecular mass of desired product 100		
economy	$\frac{1}{1}$ sum of molecular masses of all reactants		
Summany			
Summary			
% atom oconomy	molecular mass of desired product		
% atomeconomy =	m of molecular masses of all reactants		
DUD	abor of moles $\times 1000$ Actual Yield		
volume (cm ³) = $\frac{11011}{1000}$	1000000000000000000000000000000000000		
	concentration		
-Having a high atom economy has a number of benefits to both the economy and the environment			
-Calculate empirical form	ula by assuming you've got 100g and turn the percentages into masses		

BONDING

Cue		Notes			
Ionic formulas of Amm	monium, Ammoniur		$n \rightarrow NH_4^+$		
Carbonate, Hydroxide,	e, Nitrate Carbonate		$2 \rightarrow CO_3^{2^-}$		
and Sulfate		Hydroxide \rightarrow OH ⁻			
		Nitrate \rightarrow	NO ₃ -		
		Sulfate \rightarrow	SO4 ²⁻		
Electrostatic attraction	ı	Holds posi	tive and negative ions	together – is very stroi	ng
Electrical conductivity	of ionic	Ionic comp	pounds conduct electricity when they're molten or dissolved but		
compounds		not when they're solid, because the ions in a liquid are free to move and can			
		carry a cha	irge.		
Melting point of ionic		Have high	melting points, as the	giant ionic lattices are	held together by
compounds		strong electrostatic forces, which take a lot of energy to overcome			
Solubility of ionic com	pounds	Ionic comp	ounds tend to dissolve	e in water, water mole	cules are polar and
		pull the ior	ns away from the lattic	e and cause it to disso	lve
Molecules		Form whe	n two or more atoms b	ond together, they are	e held together by
		strong cov	alent bonds.		
Simple covalent comp	ounds	Compound	ls that are made up of	lots of individual mole	cules are called simple
		covalent co	ompounds. The atoms	in the molecules are h	eld together by strong
		covalent b	onds, but the molecule	es within the compoun	d are held together by
		weaker int	ermolecular forces, its	these that determine	the properties of the
		compound	s. In general, they hav	e low melting and boil	ing points and are
		electrical i	nsulators		U.
Giant covalent structu	Giant covalent structures		Are a type of crystal structure – have a have network of covalently bonded		
		atoms (aka macromolecular structures)			
Graphite		The carbon atoms in a nuclear sheets of flat hexagons covalently bonded			
		with three ond, each. The fourth over electron of each carbon is			ch carbon is
Currentited			2. The sheets are cond	ec together by weak v	an der Waals forces
Graphite's properties	Graphite's properties		Suppery, can be used as a divy lubricant in pencils as the weak bonds		
prev		perween rare scan be easily broken			
		rective current can now due to delocalised electrons			
		-Low density so used to make lightweight sports equipment as the layers are			
			Yery high melting points because of the strong covalent bonds		
		heragon sheets			
		-Insoluble in any solvent as the covalent honds in the sheets are too strong			
Diamond		Each carbon atom is covalently bonded to four other carbon atoms the			
		atoms arrange themselves in a tetrahedral shape – its crystal lattice			
		structure.			
Diamonds properties		-High melting point			
		-Extremely hard – used in diamond tipped drills and saws			
		-Good thermal conductor as vibrations travel easily through the stiff lattice			
		-Can't conduct electricity			
		-Wont dissolve in any solvent			
Co-ordinate (dative covalent)		Where one of the atoms provides both of the shared electrons			
bonds			•		
Summary					
Bonding	g Mp/Bp		State (standard c)	Conduct electricity	Soluble in water
Ionic	High		Solid	, Molten/dissolved	Yes
Simple covalent	mple covalent Low		Usually fluid	No	Depend how polar
Giant covalent	High		Solid	No (Ex granhite)	No
	1.1.2				

BONDING

Cue	Notes			
Electronegativity	The ability to attract the bonding electrons in a covalent bond. Its measured			
	on the Pauling Scale (higher number = more electronegative).			
Polarity of diatomic gases (e.g.	Non-polar because the atoms have equal electronegativities so the electrons			
H ₂ , Cl ₂)	are equally attracted to both nuclei.			
Polarity with two atoms of	The bonding electrons are pulled towards the more electronegative atom,			
different electronegativities	this makes the bond polar, the greater the difference in electronegativity the			
	more polar the bond			
Dipole	In a polar bond, the difference in electronegativity between two atoms			
	causes a dipole. This is the difference in charge between the two atoms			
	caused by a shift in the electron density in the bond			
Polar molecules	If a charge is distributed unevenly over a whole molecule, then the molecule			
	will have a permanent dipole. Whether or not a molecule is polar depends			
	on whether it has any polar bonds and its overall shape.			
Polar bonds arranged	Dipoles cancel each other out, so the molecule has no permanent dipole and			
symmetrically	is non-polar			
Polar bonds all point in roughly	The charge will be arranged unevenly across the whole molecule, this results			
the same direction	in a polar molecule which has a permanent dipole			
What are intermolecular	They're forces that exist between molecules and are much weaker than			
forces?	covalent, ionic or metallic bonds.			
Van der Waals Forces	Cause all atoms and molecules to be tracted to each other. Electrons in			
	charge clouds all away borng really quickly so at any particular moment			
	the electrons are more likely to reor one side than the other, so the atom			
	the opposite direction opposite by a paid bouring atom, the two dipoles are the			
	attractor to see other			
forces	- Harger molecules have larger electron clouds, meaning stronger van der Waals forces			
Torces	-long straight molecules can lie closer together than branched ones the			
	closer the molecules the stronger the forces.			
Permanent dinole-dinole	In a substance made up of molecules that have permanent dipoles, there will			
forces	he weak electrostatic forces of attraction between the δ + and δ - charges on			
	neighbouring molecules			
Testing for permanent dipoles	If you put an electrostatically charged rod next to a jet of polar liquid, the			
	liquid will move towards the rod.			
Hydrogen bonding	The strongest intermolecular force, only happens when hydrogen is			
	covalently bonded to fluorine, nitrogen or oxygen. They are very			
	electronegative so draw the bonding electrons away from the hydrogen			
	atom. The bond is so polarised, and hydrogen has such a high charge			
	density because its so small, that the hydrogen atoms form weak bonds			
	with the lone pairs of electrons on the F. N O atoms of other molecules			
Summary				
-Electronegativity is the ability to attract bonding electrons in a covalent bond				
-The three types of intermolec	ular forces are Van der Waals, dipole-dipole and hydrogen bonding (in			

order of strength)

BONDING

Cue	Notes			
What is metallic bonding	The outermost shell of electrons of a metal atom is			
	(Me) (Me) (Me) delocalised, this leaves a positive metal ion, which is			
	Mg ^a Mg ^a Mg ^a Mg ^a attracted to the delocalised negative electrons. They			
	form a lattice of closely packed positive ions in a sea of			
	delocalised electrons			
	electron 'sea' lattice of Mg ⁿ ions			
Meiting point (metals)	Nietais nave nigh meiting points because of the strong electrostatic attraction			
	between the positive metal ions and delocalised electrons. More delocalised			
	electrons mean that bonding is stronger and melting point is higher.			
Ability of metals to be	Metals are malleable and ductile as there's no bonds holding specific ions			
shaped	together, so the metal ions can slide over each other			
Conductivity of metals	The delocalised electrons can pass kinetic energy to each other, so they're			
	good thermal conductors. They can also carry a charge so are good electrical			
Calability of seatals	conductors			
Solubility of metals	Metals are insoluble, except in liquid metals, because of the strength of the			
Droportion of colid	Here its particles your cless together, so has a high density Solid and			
Properties of solid	and is incompressible, the particles withrate about a fixed point.			
	and			
	call t move about neery.			
Properties of liquid	Has a similar density to solids and is virtually CO			
	incompressible, the particles move about field and			
	randomly allowing it to flow			
Duous aution of son				
Properties of gas	Particles in V2 lots of energy and aller ar apart, so the			
e avre	norticles more thank freely with pet a lot of attraction			
Drev	hot when there is they'll quickly diffuse to fill a container			
• •				
Melting and boiling simple	To melt or boil simple covalent substances you only have to overcome the			
covalent substances	weak intermolecular forces that hold the molecules together so they have			
	relatively low melting and boiling points			
Melting and boiling giant	To melt or boil a giant covalent substance you do need to break the covalent			
covalent substances	bonds holding the atoms together, so they have very high melting and boiling			
	points.			
Summary				
-Metallic bonding involves attraction between delocalised electrons and positive ions in a lattice				
-Metallic lattices are one of the four types of crystal structure				
-Metals have high melting points, are malleable and ductile, can conduct heat and electricity and are insoluble				
-Melting and boiling points of a substance are determined by the strength of the attraction between its				
particles.				

-A substance will only conduct electricity if it contains charged particles that are free to move

-How soluble a substance is in water depends on the type of particles that it contains. Water is a polar solvent, some substances that are polar or charged will dissolve in it well, whereas non-polar or uncharged substances won't.

REDOX

Cue	Notes			
What is Oxidation?	-Increase in oxidation number			
	-Loss of electrons			
	-Addition of Oxygen			
	-Loss of Hydrogen			
What is Reduction?	-Decrease in oxidation number			
	-Gain of electrons			
	-Loss of Oxygen			
	-Addition of Hydrogen			
What is	Disproportionation occurs when an element is simultaneously oxidised			
disproportionation?	and reduced to form two different products			
What are oxidising agents?	A compound which oxidises another compound (by gaining electrons and			
[O]	hence being reduced in the process)			
What are reducing agents?	A compound which reduces another compound (by losing electrons and			
[H]	hence being oxidised in the process)			
What is the oxidation state	0			
of all atoms (including				
those in a diatomic				
molecule such as H ₂)?				
Rules for assigning	1. All uncombined elements have an oxidation number of term			
oxidation numbers	2. The oxidation numbers of the elements in a contol und add up to zero			
	3. The oxidation number of a monormal consistent is equal to the ionic charge			
	4. In a polyatomic ion (COL2) the sum of the individual oxidation			
	numbers of the eliments ands up to the charge on the ion			
	5 Several lements have invariable or dation numbers in their common			
	compounds.			
Common oxidation	Group 1 metrix = +1			
number	$rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$			
•				
	H = +1 (except in metal hydrides where it is -1 eg NaH)			
	F = -1			
	CI, Br, $I = -1$ except in compounds with oxygen and fluorine			
	O = -2 except in peroxides (H2O2) where it is -1 and in compounds with			
Delensing redevice vetices	Tuorine.			
Balancing redox equations	1. Work out oxidation numbers for element being oxidised/ reduced 2.			
	For reduction add e's to reactants			
	For ovidation add o's to products			
	2 check to see that the sum of the charges on the reactant side equals			
	the sum of the charges on the product side			
More complex half	Multiply the half equations to get equal electrons			
	Add half equations together and cancel electrons			
	Multiply the half equations to get equal			
	Add half equations together and cancel electrons			
Summary				
-Oxidation is loss of electrons				
-Reduction is gain of electrons				
-Atoms and diatomic molecu	les have an oxidation state of 0			