Name: Nodar Nadibaidze

¹ Find the center and radius of the circle $x^2 + 6x + y^2 - 4y = -4$. What are the perimeter and the area? Leave the answers in the terms of π .

Solution: The equation of a circle in the standard form is:

$$(x-a)^2 + (y-b)^2 = r^2$$
 (1)

r - Radius of a circle

(a;b) – Center coordinates

We should represent the given equation in the text as (1):
$$x^2 + 6x + y^2 - 4y = -4$$

$$x^2 + 6x + 9 - 9 + 4 - 4y + 4 = 0$$
 So if we want our equation to be the same as (1), (a) should write it as complete square, like $x^2 + 2ab + b^2 = (a + b)^2$. The same 10 and then subtract 9 to $x^2 + 6x$ (if I add and then

 $a^2 + 2b + 2b + (a + b)^2$. The graph and then subtract 9 to $x^2 + 6x$ (if I add and then subtract the same number, nothing will change. Now we have $x^2 + 6x + 9$, that is the same as $(x+3)^2$) and transfer -4 to the left side of the equation and write it after y^2-4y (Now, y^2-4y) (Now, y^2-4y) and transfer -4 to the left side of the equation and write it after y^2-4y) (Now, y^2-4y) and transfer -4 to the left side of the equation and write it after y^2-4y). $4y + 4 = (y - 2)^2$).

$$(x+3)^2 + (y-2)^2 = 9$$

Note, that in (1) equation in front of a and b there are negative signs, so we should write:

$$(x - (-3))^2 + (y - 2)^2 = 3^2$$

With (1) pattern a = -3, b = 2, r = 3.

The center = (-3; 2), the radius r = 3.

Circumference (perimeter) of a circle:

$$C = 2\pi r \tag{2}$$

Preview from Notesale.co.uk
Preview from 15 of 15
Page 15 of 15