If
$$\lim_{n o\infty}\sqrt[n]{|a_n|}=L$$
 and $L>1$ or $\lim_{n o\infty}\sqrt[n]{|a_n|}=\infty$, then the series $\sum_{n=1}^\infty a_n$ is divergent.

If $\lim_{n o\infty}\sqrt[n]{|a_n|}=L$ and L=1, then there is no conclusion about the convergence or divergence of $\sum a_n$

The Comparison Test a_n and $a_n \le b_n$ or a_n is convergent.

If series $\sum a_n$ and $\sum b_n$ have positive terms, $\sum b_n$ is divergent, and $a_n \geq b_n$ for all n, then $\sum a_n$ is also divergent.

The Integral Test

For a function f that is a continuous, positive, and decreasing function on $[1,\infty)$ and $a_n=f(n)$, the following is true:

The series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_{1}^{\infty} f(x) \ dx$ is convergent.