Chiron Approach to Asymmetric

Synthesis, Co. A chiron approach or chires and synthesis refers to a synthetic process that thiploys a ofember of the chiral pool as a starting material (SM) in the synthesis of a target molecule (TM).

The chiral centre(s) in the starting material are (but not all are always) preserved in the target molecule (TM).

It may use pre-existing chiral centres from the chiral pool substrate to influence formation of new chiral centres.

The new chiral centres can be generated through substitution or addition reactions.

4:06 PM

Asymmetric Synthesis

Via Substitution Reaction (Revisited)

SN₁ vs SN₂: Which is best for asymmetric synthesis?

Attribute	SN ₁	SN ₂
Kinetics	First Order	Second Order
Mechanism	Stepwise Reaction	Concerted Reaction
Stereochemistry	Non Stereospecific	Stereospecific
	Racemization occurs	Complete inversion
Best Substrates	3° and 2° Substrates	1º and 2º Substrates
Nucleophile	Good nucleophile works	Strong nucleophile best
Leaving Group	Good leaving group	Good leaving group

For being stereospecific, SN₂ reactions on 2° substrates are

Asymmetric Synthesis

SN₂ Reactions: Good Leaving Groups Needed

A **leaving group** is an atom (or a group of atoms) that is displaced as stable species taking with it the bonding electrons.

The leaving group may be an anion (e.g. I^-) or a neutral molecule (e.g. H_2O).

The better the leaving group, the more likely it is to depart: The more the stable a **Lvg**⁻ is, the more it favours its "leaving".

A good leaving group is the conjugate base of a strong acid.

Some of the strongest organic acids are the sulphonic acids.

$$CH_3$$
 \longrightarrow CH_3 \longrightarrow

p-TsO⊝

Chiral Pool Synthesis

New Chiral Centres through Substitution Reactions

Chiral pool substrate Othat are commonly used in organic synthesis contain functional groups that are poor leaving groups.

These functional groups have to be converted into good leaving groups that can be used in substitution reactions.

4:06 PM