Direct Addition vs Conjugate Addition The Nature of the Weleophile

Attribute	m Mect Addition	Conjugate Addition
Base street the of	Neucleophiles that are	Nucleophiles that are
nucleophile	stronger bases	weaker bases
Carbanion	Organolithium (RLi) and	Organocopper
nucleophiles	Grignard reagents	reagents (R ₂ CuLi)
	(RMgBr)	Cyanide (NaCN)
		Enolates
Hetero	Amines	Thiols
nucleophiles	(RNH ₂)	(RSH)
Hydride	Lithium aluminium	Copper hydride
Nucleophiles	hydride (LiAIH ₄)	(CuH)

2:02 PM

Conjugate Addition Reactions Reactions with Englates: The Rationale

have exactly the same opportunity to attack the carbonyl group directly as do simple nucleophiles.

Thermodynamic control leads to conjugate addition, but kinetic control leads to direct attack.

Success in conjugate addition is pegged on the direct addition (an Aldol reaction) being reversible. This enables the conjugate addition to compete and, as its product is more stable (thermodynamically stable), it eventually become the sole

_{2:02 PM} product.