Ex: 1) In example (3) above, show that y=x2 is NOT a solution

2) find another solution to the DE in eg. (4) for all x ER.

General and Particular Solution Consider the first order DE

Integrating with respect to x yields the general solution

$$y = 3x + C$$
, $C = constant$.

The general solution of the differential equation, which includes all possible solutions, is a family of straight lines with slope equal to 3. On the other hand, y = 3xis a particular solution passing through the origin, with the constant C being 0.

Consider the differential equation

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 48x.$$

Integrating both sides of the equation with respect C_1 C_2 C_3 Integrating with respect to x a canceled x

$$\frac{dy}{dx} = 8x^3 + C_1x + C_2.$$

Integrating with respect to x once more results in the general solution

$$y = 2x^4 + \frac{1}{2}C_1x^2 + C_2x + C_3$$

where C_1 , C_2 , C_3 are arbitrary constants. When the constants C_1 , C_2 , C_3 take specific values, one obtains particular solutions. For example,

$$y = 2x^4 + 3x^2 + 1$$
, $C_1 = 6$, $C_2 = 0$, $C_3 = 1$, $y = 2x^4 + x^2 + 3x + 5$, $C_1 = 2$, $C_2 = 3$, $C_3 = 5$,

are two particular solutions.

Remarks: In general, an nth-order ordinary differential equation will contain n arbitrary constants in its general solution. Hence, for an nth-order ordinary differential equation, n conditions are required to determine the n constants to yield a particular solution.

In applications, there are usually two types of conditions that can be used to determine the constants.