
Integration by parts:
∫

u dv = uv −
∫

v du

Chain rule:
d

dt
(f(g(t)) = f ′(g(t)) · g′(t)

Directional field: for first order equations y′ = f(t, y).
Interpret y′ as the slope of the tangent to the solution y(t) at point (t, y) in
the y − t plane.

Example 5. Consider the equation y′ =
3− y

2
. We know the following:

• If y = 3, then y′ = 0, flat slope,

• If y > 3, then y′ < 0, down slope,

• If y < 3, then y′ > 0, up slope.

See the directional field below (with some solutions sketched):

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

As t → ∞, we have y → 3.

Example 6. y′ = t + y

• We have y′ = 0 when y = −t,
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• We have y′ > 0 when y > −t,

• We have y′ < 0 when y < −t.

−1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

What can we say about the solutions?

This depends on the initial condition y(0) = y0.

• If y(0) > −1, then y → ∞ as t → ±∞.

• If y(0) < −1, then y → ∓∞ as t → ±∞.

• If y(0) = −1, the y(t) = −t− 1.
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We note that the statement of this theorem is not as strong as the one for
linear equation.

Below we give two counter examples.

Example 1. Loss of uniqueness. Consider

dy

dy
= f(t, y) = − t

y
, y(−2) = 0.

We first note that at y = 0, which is the initial value of y, we have y′ =
f(t, y) → ∞. So the conditions of the Theorem are not satisfied, and we
expect something to go wrong.

Solve the equation as an separable equation, we get

∫

y dy = −
∫

t dt, y2 + t2 = c,

and by IC we get c = (−2)2+0 = 4, so y2+ t2 = 4, and y = ±
√
4− t2. Both

are solutions. We lose uniqueness of solutions.

Example 2. Blow-up of solution. Consider a simple non-linear equation:

y′ = y2, y(0) = 1.

Note that f(t, y) = y2, which is defined for all t and y. But, due to the
non-linearity of f , solution can not be defined for all t.

This equation can be easily solved as a separable equation.

∫

1

y2
dy =

∫

dt, −1

y
= t+ c, y(t) =

−1

t+ c
.

By IC y(0) = 1, we get 1 = −1/(0 + c), and so c = −1, and

y(t) =
−1

t− 1
.

We see that the solution blows up as t → 1, and can not be defined beyond
that point.

This kind of blow-up phenomenon is well-known for nonlinear equations.
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we get
S(t) = 27000e0.08t − 25000.

When t = 40, we have

S(40) = 27000 · e3.2 − 25000 ≈ 637, 378.

Compare this to the total amount invested: 2000 + 2000 ∗ 40 = 82, 000.

Example 4: A home-buyer can pay $800 per month on mortgage payment.
Interest rate is 9% annually, (but compounded continuously), mortgage term
is 20 years. Determine maximum amount this buyer can afford to borrow.

Answer. Set up the model: Let Q(t) be the amount borrowed (principle)
after t years

dQ

dt
= 0.09Q(t)− 800 ∗ 12

The terminal condition is given Q(20) = 0. We must find Q(0).

Solve the differential equation:

Q′ − 0.09Q = −9600, µ = e−0.09t

Q(t) = e0.09t
∫

(−9600)e−0.09tdt = e0.09t
[

−9600
e−0.09t

−0.09
+ c

]

=
9600

0.09
+ ce0.09t

By terminal condition

Q(20) =
9600

0.09
+ ce0.09∗20 = 0, c = − 9600

0.09 · e1.8
so we get

Q(t) =
9600

0.09
− 9600

0.09 · e1.8 e
0.09t.

Now we can get the initial amount

Q(0) =
9600

0.09
− 9600

0.09 · e1.8 =
9600

0.09
(1− e−1.8) ≈ 89, 034.79.

Model III: Mixing Problem.

Example 5. At t = 0, a tank contains Q0 lb of salt dissolved in 100 gal of
water. Assume that water containing 1/4 lb of salt per gal is entering the
tank at a rate of r gal/min. At the same time, the well-mixed mixture is
draining from the tank at the same rate.

19
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Here g = 9.8 is the gravity, and m = 0.5 is the mass. We have an equation
for v:

dv

dt
= − 1

10
v − 9.8 = −0.1(v + 98),

so
∫

1

v + 98
dv =

∫

(−0.1)dt, ⇒ ln |v + 98| = −0.1t+ c

which gives
v + 98 = c̄e−0.1t, ⇒ v = −98 + c̄e−0.1t.

By IC:

v(0) = −98 + c̄ = 10, c̄ = 108, ⇒ v = −98 + 108e−0.1t.

To find the position S, we use S ′ = v and integrate

S(t) =

∫

v(t) dt =

∫

(−98 + 108e−0.1t)dt = −98t+ 108e−0.1t/(−0.1) + c

By IC for S,

S(0) = −1080 + c = 30, c = 1110, S(t) = −98t− 1080e−0.1t + 1110.

At the maximum height, we have v = 0. Let’s find out the time T when max
height is reached.

v(T ) = 0, −98 + 108e−0.1T = 0, 98 = 108e−0.1T , e−0.1T = 98/108,

−0.1T = ln(98/108), T = −10 ln(98/108) = ln(108/98).

So the max height SM is

SM = S(T ) = − 980 ln
108

98
− 1080e−0.1 ln(108/98) + 1110

= −980 ln
108

98
− 1080(98/108) + 1110 ≈ 34.78 m.

Other possible questions:

• Find the time when the ball hit the ground.
Solution: Find the time t = tH for S(tH) = 0.
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• Find the speed when the ball hit the ground.
Solution: Compute |v(tH)|.

• Find the total distance traveled by the ball when it hits the ground.
Solution: Add up twice the max height SM with the height of the
building.

23
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3.3: Complex Roots

The roots of the characteristic equation can be complex numbers. Consider
the equation

ay′′ + by′ + cy = 0, → ar2 + br + c = 0.

The two roots are

r1,2 =
−b±

√
b2 − 4ac

2a
.

If b2 − 4ac < 0, the root are complex, i.e., a pair of complex conjugate
numbers. We will write r1,2 = λ± iµ. There are two solutions:

y1 = e(λ+iµ)t = eλteiµt, y2 = y1 = e(λ−iµ)t = eλte−iµt.

To deal with exponential function with pure imaginary exponent, we need
the Euler’s Formula:

eiβ = cos β + i sin β.

A couple of Examples to practice this formula:

ei
5

6
π = cos

5

6
π + i sin

5

6
π = −

√
3

2
+ i

1

2
.

eiπ = cos π + i sin π = −1.

ea+ib = eaeib = ea(cos b+ i sin b).

Back to y1, y2, we have

y1 = eλt(cosµt+ i sinµt), y2 = eλt(cosµt+ i sinµt).

But these solutions are complex valued. We want real-valued solutions! To
achieve this, we use the Principle of Superposition. If y1, y2 are two solutions,
then 1

2
(y1 + y2),

1
2i
(y1 − y2) are also solutions. Let

ỹ1 =̇
1

2
(y1 + y2) = eλt cosµt, ỹ2 =̇

1

2i
(y1 − y2) = eλt sinµt.

To make sure they are linearly independent, we can check the Wronskian,

W (ỹ1, ỹ2) = µe2λt 6= 0. (home work problem).
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Answer. The characteristic equation is

r2 + 2r + 101 = 0, ⇒ r1,2 = −1± 10i, ⇒ λ = −1, µ = 10.

So the general solution is

y(t) = e−t(c1 cos 10t+ c2 sin 10t),

so
y′(t) = −e−t(c1 cos t+ c2 sin t) + e−t(−10c1 sin t+ 10c2 cos t)

Fit in the ICs:

y(0) = 1 : y(0) = e0(c1 + 0) = c1 = 1,

y′(0) = 0 : y′(0) = −1 + 10c2 = 0, c2 = 0.1.

Solution is
y(t) = e−t(cos t + 0.1 sin t).

The graph is given below:

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

We see it is a decaying oscillation. The sin and cos part gives the oscillation,
and the e−t part gives the decaying amplitude. As t → ∞, we have y → 0.
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Cancel the term e−2t, and we get v′′ = 0, which gives v(t) = c1t + c2. So

y2(t) = vy1 = (c1t + c2)e
−2t = c1te

−2t + c2e
−2t.

Note that the term c2e
−2t is already contained in cy1. Therefore we can choose

c1 = 1, c2 = 0, and get y2 = te−2t, which gives the same general solution as
Method 1. We observe that this method involves more computation than
Method 1.

A typical solution graph is included below:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

We see if c2 > 0, y increases for small t. But as t grows, the exponential
(decay) function dominates, and solution will go to 0 as t → ∞.

One can show that in general if one has repeated roots r1 = r2 = r, then
y1 = ert and y2 = tert, and the general solution is

y = c1e
rt + c2tr

rt = ert(c1 + c2t).

Example 2. Solve the IVP

y′′ − 2y′ + y = 0, y(0) = 2, y′(0) = 1.
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Solve this for y2:

µ = exp(

∫

1

t
dt) = exp(ln t) = t, ⇒ y2 =

1

t

∫

t · t− 3

2dt =
1

t
(
2

3
t
3

2 + C).

Let C = 0, we get y2 = 2
3

√
t. Since 2

3
is a constant multiplication, we can

drop it and choose y2 =
√
t.

Method 2: This is the textbook’s version. We saw in the previous example
that this method is inferior to Method 1, therefore we will not focus on it at
all. If you are interested in it, read the book.

Let’s introduce another method that combines the ideas from Method 1 and
Method 2.

Method 3. We will use Abel’s Theorem, and at the same time we will seek
a solution of the form y1 = vy1.

By Abel’s Theorem, we have ( worked out in M1) W (y1, y2) = t−
3

2 . Now,
seek y2 = vy1. By the definition of the Wronskian, we have

W (y1, y2) = y1y
′
2 − y′1y2 = y1(vy1)

′ − y′1(vy1) = y1(v
′y1 + vy′′1)− vy1y

′
1 = v′y21.

Note that this is a general formula.

Now putting y1 = 1/t, we get

v′
1

t2
= t−

3

2 , v′ = t
1

2 , v =

∫

t
1

2dt =
2

3
t
3

2 .

Drop the constant 2
3
, we get

y2 = vy1 = t
3

2

1

t
= t

1

2 .

We see that Method 3 is the most efficient one among all three methods. We
will focus on this method from now on.

Example 4. Consider the equation

t2y′′ − t(t + 2)y′ + (t + 2)y = 0, t > 0.
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So: we have mg = kL which give

k =
mg

L

which gives a way to obtain k by experiment: hang a mass m and measure
the elongation L.

Model the motion: Let u(t) be the displacement/position of the mass at time
t, assuming the origin u = 0 at the equilibrium position, and downward the
positive direction.
Total elongation: L+ u
Total spring force: Fs = −k(L+ u)

Other forces:
* damping/resistent force: Fd(t) = −γv = −γu′(t), where γ is the damping
constant, and v is the velocity
* External force applied on the mass: F (t), given function of t

Total force on the mass:
∑

f = mg + Fs + Fd + F .

Newton’s law of motion ma =
∑

f gives

ma = mu′′ =
∑

f = mg+Fs+Fd+F, mu′′ = mg−k(L+u)−γu′+F.

Since mg = kL, by rearranging the terms, we get

mu′′ + γu′ + ku = F

where m ia the mass, γ is the damping constant, k is the spring constant,
and F is the external force.

Next we study several cases.

Case 1: Undamped free vibration (simple harmonic motion). We assume no
damping (γ = 0) and no external force (F = 0). So the equation becomes

mu′′ + ku = 0.

Solve it

mr2 + k = 0, r2 = − k

m
, r1,2 = ±

√

k

m
i = ±ω0i, where ω0 =

√

k

m
.
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Inverse Laplace transform. Definition:

L−1{F (s)} = f(t), if F (s) = L{f(t)}.

Technique: find the way back.

Some simple examples:

Example 10.

L−1

{

3

s2 + 4

}

= L−1

{

3

2
· 2

s2 + 22

}

=
3

2
L−1

{

2

s2 + 22

}

=
3

2
sin 2t.

Example 11.

L−1

{

2

(s+ 5)4

}

= L−1

{

1

3
· 6

(s+ 5)4

}

=
1

3
L−1

{

3!

(s+ 5)4

}

=
1

3
e−5tL−1

{

3!

s4

}

=
1

3
e−5tt3.

Example 12.

L−1

{

s+ 1

s2 + 4

}

= L−1

{

s

s2 + 4

}

+
1

2
L−1

{

2

s2 + 4

}

= cos 2t
1

2
sin 2t.

Example 13.

L−1

{

s+ 1

s2 − 4

}

= L−1

{

s+ 1

(s− 2)(s+ 2)

}

= L−1

{

3/4

s− 2
+

1/4

s+ 2

}

=
3

4
e2t+

1

4
e−2t.

Here we used partial fraction to find out:

s+ 1

(s− 2)(s+ 2)
=

A

s− 2
+

B

s + 2
, A = 3/4, B = 1/4.
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(s2 + 1)Y (s) =
s

s2 + 4
+ 2s+ 1 =

2s3 + s2 + 9s+ 4

s2 + 4

Y (s) =
2s3 + s2 + 9s+ 4

(s2 + 4)(s2 + 1)
=

As+B

s2 + 1
+

Cs+D

s2 + 4
.

Comparing numerators, we get

2s3 + s2 + 9s+ 4 = (As+B)(s2 + 4) + (Cs+D)(s2 + 1).

One may expand the right-hand side and compare terms to find A,B,C,D,
but that takes more work.

Let’s try by setting s into complex numbers.

Set s = i, and remember the facts i2 = −1 and i3 = −i, we have

−2i− 1 + 9i+ 4 = (Ai+B)(−1 + 4),

which gives

3 + 7i = 3B + 3Ai, ⇒ B = 1, A =
7

3
.

Set now s = 2i:

−16i− 4 + 18i+ 4 = (2Ci+D)(−3),

then

0 + 2i = −3D − 6Ci, ⇒ D = 0, C = −1

3
.

So

Y (s) =
7

3

s

s2 + 1
+

1

s2 + 1
− 1

3

s

s2 + 4

and

y(t) =
7

3
cos t+ sin t− 1

3
cos 2t.

A very brief review on partial fraction, targeted towards inverse

Laplace transform.

Goal: rewrite a fractional form Pn(s)
Pm(s)

(where Pn is a polynomial of degree n)
into sum of “simpler” terms. We assume n < m.
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Compare s2-term: 0 = A+B, so B = −A = −1.

Compare s-term: 0 = A+ C, so C = −A = −1.

So

Y (s) = e−s

(

1

s
− s+ 1

s2 + s+ 1

)

+
s+ 1

s2 + s+ 1
.

We work out some detail

s+ 1

s2 + s+ 1
=

s+ 1

(s+ 1
2
)2 + (

√
3
2
)2

=
(s+ 1

2
) + 1√

3
·
√
3
2

(s+ 1
2
)2 + (

√
3
2
)2

,

so

L−1

{

s + 1

s2 + s+ 1

}

= e−
1

2
t

(

cos

√
3

2
t +

1√
3
sin

√
3

2
t

)

.

We conclude

y(t) = u1(t)

[

1− e−
1

2
(t−1)

(

cos

√
3

2
(t− 1)− sin

√
3

2
(t− 1)

)]

+e−
1

2
t

[

cos

√
3

2
t+

1√
3
sin

√
3

2
t

]

.

Remark: There are other ways to work out the partial fractions.

Extra question: What happens when t → ∞?

Answer: We see all the terms with the exponential function will go to zero,
so y → 1 in the limit. We can view this system as the spring-mass system
with damping. Since g(t) becomes constant 1 for large t, and the particular
solution (which is also the steady state) with 1 on the right hand side is 1,
which provides the limit for y.

Further observation:

• We see that the solution to the homogeneous equation is

e−
1

2
t

[

c1 cos

√
3

2
t + c2 sin

√
3

2
t

]

,

and these terms do appear in the solution.
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• Actually the solution consists of two part: the forced response and the
homogeneous solution.

• Furthermore, the g has a discontinuity at t = 1, and we see a jump in
the solution also for t = 1, as in the term u1(t).

Example 2. (Undamped system with force, pure imaginary roots) Solve the
following initial value problem

y′′ + 4y = g(t) =







0, 0 ≤ t < π,
1, π ≤ t < 2π,
0, 2π ≤ t,

y(0) = 1, y′(0) = 0 .

Rewrite

g(t) = uπ(t)− u2π(t), L{g} = e−πs1

s
− e−2π 1

s
.

So

s2Y − s+ 4Y =
1

s

(

e−π − e−2π
)

.

Solve it for Y :

Y (s) =
e−π − e−2π

s(s2 + 4)
+

s

s2 + 4
=

e−π

s(s2 + 4)
− e−2π

s(s2 + 4)
+

s

s2 + 4
.

Work out partial fraction

1

s(s2 + 4)
=

A

s
+

Bs + C

s2 + 4
, A =

1

4
, B = −1

4
, C = 0.

So

L−1{ 1

s(s2 + 4)
} =

1

4
− 1

4
cos 2t .

Now we take inverse Laplace transform of Y

y(t) = uπ(t)

(

1

4
− 1

4
cos 2(t− π)

)

− u2π(t)

(

1

4
− 1

4
cos 2(t− 2π)

)

+ cos 2t

= (uπ(t)− u2π)
1

4
(1− cos 2t) + cos 2t

= cos 2t+

{

1
4
(1− cos 2t), π ≤ t < 2π,

0, otherwise,

= homogeneous solution + forced response
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Example 3. In Example 2, let

g(t) =







0, 0 ≤ t < 4,
et, 4 ≤ 5 < 2π,
0, 5 ≤ t.

Find Y (s).

Answer. Rewrite

g(t) = et(u4(t)− u5(t)) = u4(t)e
t−4e4 − u5(t)e

t−5e5 ,

so

G(s) = L{g(t)} = e4e−4s 1

s− 1
− e5e−5s 1

s− 1
.

Take Laplace transform of the equation, we get

(s2+4)Y (s) = G(s)+s, Y (s) =
(

e4e−4s − e5e−5s
) 1

(s− 1)(s2 + 4)
+

s

s2 + 4
.

Remark: We see that the first term will give the forced response, and the
second term is from the homogeneous equation.

The students may work out the inverse transform as a practice.

Example 4. (Undamped system with force, example 2 from the book p.
334)

y′′ + 4y = g(t), y(0) = 0, y′(0) = 0, g(t) =







0, 0 ≤ t < 5,
(t− 5)/5, 5 ≤ 5 < 10,
1, 10 ≤ t.

Let’s first work on g(t) and its Laplace transform

g(t) =
t− 5

5
(u5(t)− u10(t)) + u10(t) =

1

5
u5(t)(t− 5)− 1

5
u10(t)(t− 10),

G(s) = L{g} =
1

5
e−5s 1

s2
− 1

5
e−10s 1

s2

Let Y (s) = L{y}, then

(s2+4)Y (s) = G(s), Y (s) =
G(s)

s2 + 4
=

1

5
e−5s 1

s2(s2 + 4)
−1

5
e−10s 1

s2(s2 + 4)
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we get


























x′
1 = y′ = x2

x′
2 = y′′ = x3
...

x′
n−1 = y(n−1) = xn

x′
n = y(n) = F (t, x1, x2, · · · , xn)

with corresponding source terms.

Reversely, we can convert a 1st order system into a high order equation.

Example 2. Given

{

x′
1 = 3x1 − 2x2

x′
2 = 2x1 − 2x2

{

x1(0) = 3
x2(0) = 1

2

Eliminate x2: the first equation gives

2x2 = 3x1 − x′
1, x2 =

3

2
x1 −

1

2
x′
1.

Plug this into second equation, we get

(

3

2
x1 −

1

2
x′
1

)′
= 2x1 − 2x2 = −x1 + x′

1

3

2
x′
1 −

1

2
x′′
1 = −x1 + x′

1

x′′
1 − x′

1 − 2x1 = 0

with the initial conditions:

x1(0) = 3, x′
1(0) = 3x1(0)− 2x2(0) = 8.

This we know how to solve!

Definition of a solution: a set of functions x1(t), x2(t), · · · , xn(t) that satisfy
the differential equations and the initial conditions.
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Definition: If λ1 6= λ2 are real with the same sign, the critical point ~x = 0
is called a node.

If λ1 > 0, λ2 > 0, this node is called a source.

If λ1 < 0, λ2 < 0, this node is called a sink.

A sink is stable, and a source is unstable.

Example 4. (Source node) Suppose we know the eigenvalues and eigenvec-
tors of A are

λ1 = 3, λ2 = 4, ~v1 =

(

1
2

)

, ~v2 =

(

1
−3

)

.

(1) Find the general solution for ~x′ = A~x, (2) Sketch the phase portrait.

Answer. (1) The general solution is simple, just use the formula

~x = c1e
λ1t~v1 + c2e

λ2t~v2 = c1e
3t

(

1
2

)

+ c2e
4t

(

1
−3

)

.

(2) Phase portrait: Since λ2 > λ1, then the solution approach ~v2 as time
grows. As t → −∞, ~x → c1e

λ1t~v1. See the plot below.

- x1

6x2

�M
~v1~v2

�

�M

N

~v1

~v2

�

-
6
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Summary:

(1). If λ1 and λ2 are real and with opposite sign: the origin is a saddle point,
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7.8: Repeated eigenvalues

Here we study the case where the two eigenvalues are the same, say λ1 =
λ2 = λ. This can happen, as we will see through our first example.

Example 1. Let

A =

(

1 −1
1 3

)

.

Then

det(A−λI) = det

(

1− λ −1
1 3− λ

)

= (1−λ)(3−λ)+1 = λ2−4λ+3+1 = (λ−2)2 = 0,

so λ1 = λ2 = 2. And we can find only one eigenvector ~v = (a, b)T

(A− λI)~v =

(

−1 −1
1 1

)

·
(

a
b

)

= 0, a+ b = 0.

Choosing a = 1, then b = −1, and we find ~v =

(

1
−1

)

. Then, one solution

is:

~z1 = eλt~v = e2t
(

1
−1

)

.

We need to find a second solution. Let’s try ~z2 = teλt~v. We have

~z′ = eλt~v + λteλt~v = (1 + λt)eλt~v

A~z2 = Ateλt~v = teλt(A~v) = teλtλ~v = λteλt~v

If ~z2 is a solution, we must have

~z′ = A~z → 1 + λt = λt

which doesn’t work.

Try something else: ~z2 = teλt~v + ~ηeλt. (here ~η is a constant vector to be
determined later). Then

~z′2 = (1 + λt)eλt~v + λ~ηeλt = λteλt~v + eλt(~v + λ~η)

A~z2 = λteλt~v + A~ηeλt.
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