In this case the usual differentiations and algebra yield

$$x_{p} = t + 1$$
,

and so

Now c_3 and c_4 can be expressed in terms of c_1 and c_2 by substituting (14) and (15) into either equation of (12). By using the second equation, we find, after combining terms,

$$(-c_1 - c_4) \sin t + (c_2 - c_3) \cos t = 0,$$

so $-c_1-c_4=0$ and $c_2-c_3=0$. Solving for c_3 and c_4 in terms of c_1 and c_2 gives and $c_4 = -c_1$. $c_3 = c_2$

Finally, a solution of (12) is found to be

$$x(t) = c_2 \cos t - c_1 \sin t + t + 1,$$

$$y(t) = c_1 \cos t + c_2 \sin t + t - 1.$$

(22) Solve the given problem

$$\frac{dx}{dt} = y - 1$$

$$\frac{dy}{dt} = -3x + 2y$$
......(16)

$$Dx - y = -1$$

 $(D-2)y + 3x = 0$. (17)

Then, by eliminating x, we obtain or Dx - y = -1 (D-2)y + 3x = 0. Dx - y = -1 Dx - y = -1Preview $T_{D^2x-2Dx}^{D^2x-2Dx} - 5x O_2^{x}$ Represent the sum:

Since the roots of the auxiliary equation $m^2 - 2m + 3 = 0$ are $m_1 = 1 - \sqrt{2}i$ and $m_2 = 1 + \sqrt{2}i$, the complementary function is

$$x_c = e^t \left(c_1 \cos \sqrt{2}t + c_2 \sin \sqrt{2}t \right).$$

To determine the particular solution x_p , we use undetermined coefficients by assuming that

$$x_p = A$$
.

Therefore

$$x_p'=0, \qquad x_p''=0,$$

SO,

$$x_p'' - 2x_p' + 3x_p = 0 - 0 + 3A = 2.$$

The last equality implies that

$$A=\frac{2}{3}\;;$$

Thus,

$$x = x_c + x_p = e^t (c_1 \cos \sqrt{2}t + c_2 \sin \sqrt{2}t) + \frac{2}{3}$$
. (18)