is similar and left to the reader). For 0 < c < 1, define the (measurable) sets $\{A_n\}_{n \in \mathbb{N}}$ by

$$A_n = \{f_n \ge cg\}, n \in \mathbb{N}.$$

By the increase of the sequence $\{f_n\}_{n \in \mathbb{N}}$, the sets $\{A_n\}_{n \in \mathbb{N}}$ also increase. Moreover, since the function cg satisfies $cg(x) \leq g(x) \leq f(x)$ for all $x \in S$ and cg(x) < f(x) when f(x) > 0, the increasing convergence $f_n \to f$ implies that $\bigcup_n A_n = S$. By non-negativity of f_n and monotonicity,

$$\int f_n \, d\mu \geq \int f_n \mathbf{1}_{A_n} \, d\mu \geq c \int g \mathbf{1}_{A_n} \, d\mu,$$

and so

$$\sup_n \int f_n \, d\mu \geq c \sup_n \int g \mathbf{1}_{A_n} \, d\mu.$$

Let $g = \sum_{i=1}^{k} \alpha_i \mathbf{1}_{B_i}$ be a simple-function representation of g. Then

$$\int g \mathbf{1}_{A_n} d\mu = \int \sum_{i=1}^k \alpha_i \mathbf{1}_{B_i \cap A_n} d\mu = \sum_{i=1}^k \alpha_i \mu(B_i \cap A_n).$$

Since $A_n \nearrow S$, we have $A_n \cap B_i \nearrow B_i$, i = 1, ..., k, and the continuity of measure implies that $\mu(A_n \cap B_i) \nearrow \mu(B_i)$. Therefore,

Consequently,

and the proof is completed when we let $c \rightarrow 1$.

Remark 3.9.

- The monotone convergence theorem is really about the robustness of the Lebesgue integral. Its stability with respect to limiting operations is one of the reasons why it is a de-facto "industry standard".
- 2. The "monotonicity" condition in the monotone convergence theorem cannot be dropped. Take, for example S = [0, 1], $S = \mathcal{B}([0, 1])$, and $\mu = \lambda$ (the Lebesgue measure), and define

$$f_n = n \mathbf{1}_{(0,n^{-1}]}, \text{ for } n \in \mathbb{N}.$$

Then $f_n(0) = 0$ for all $n \in \mathbb{N}$ and $f_n(x) = 0$ for $n > \frac{1}{x}$ and x > 0. In either case $f_n(x) \to 0$. On the other hand

$$\int f_n \, d\lambda = n\lambda \left((0, \frac{1}{n}] \right) = 1,$$

Additional Problems

Problem 3.11 (The monotone-class theorem). Prove the following result, known as the *monotone-class theorem* (remember that $a_n \nearrow a$ means that a_n is a non-decreasing sequence and $a_n \rightarrow a$)

Let \mathcal{H} be a class of bounded functions from S into \mathbb{R} satisfying the following conditions

- 1. \mathcal{H} is a vector space,
- 2. the constant function 1 is in H, and
- 3. *if* $\{f_n\}_{n \in \mathbb{N}}$ *is a sequence of non-negative functions in* \mathcal{H} *such that* $f_n(x) \nearrow f(x)$, for all $x \in S$ and f is bounded, then $f \in \mathcal{H}$.

Then, if \mathcal{H} contains the indicator $\mathbf{1}_A$ of every set A in some π -system \mathcal{P} , then \mathcal{H} necessarily contains every bounded $\sigma(\mathcal{P})$ -measurable function on S.

(σ, σ, μ) be a measure space, and suppose that $f \in \mathcal{L}^1$. Show that for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $A \in S$ and $\mu(A) < \delta$, then $|\int_A f d\mu| < \varepsilon$. **Problem 3.13** (Sums as integrals). In the new space $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, by μ be the counting measure

1. For example
$$\mathbb{N} \to [0,\infty]$$
, dought $\int f d\mu = \sum_{n=1}^{\infty} f(n).$

2. Use the monotone convergence theorem to show the following special case of Fubini's theorem

$$\sum_{k=1}^{\infty}\sum_{n=1}^{\infty}a_{kn}=\sum_{n=1}^{\infty}\sum_{k=1}^{\infty}a_{kn},$$

whenever $\{a_{kn} : k, n \in \mathbb{N}\}$ is a double sequence in $[0, \infty]$.

3. Show that $f : \mathbb{N} \to \mathbb{R}$ is in \mathcal{L}^1 if and only if the series

$$\sum_{n=1}^{\infty} f(n),$$

converges absolutely.

Hint: Use Theorems 3.10 and 2.12