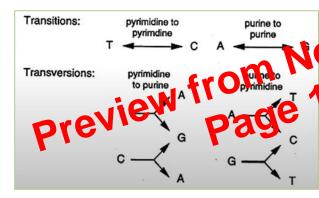


DNA MIITATION & REPAIR

What can go wrong with the DNA? Why does DNA need to be repaired?

- Errors during DNA synthesis (incorrect base-pairing, insertion of extra nucleotides, etc.)
- Radiation (non-ionizing ultraviolet light, high-energy ionizing radiation)
- Chemical exposure (nitrous acid)
- Spontaneous loss and alteration of bases

Mutations can lead to different kinds of diseases and can also cause abnormalities in the newborn.


DNA MUTATION

It can be classified:

- Based on substitution
 - Transition
 - Transversion
- Based on size/position
 - Point mutation
 - Silent
 - Missense
 - Nonsense
 - Deletion
 - Insertion

DNA MUTATION BASED ON SUBSTITUTION

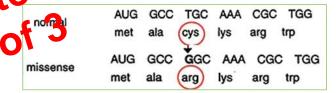
Transition	Change to same kind		
Transversion	Change to another kind		

DNA MUTATION BASED ON SIZE/POSITION

DNA STOP CODONS

 $\mbox{\sc Point mutation}$ happens when there is only 1 nucleotide that replaces another

A. Silent mutation happens when the mutation has very little to no effect to the body. Despite the point mutation, there is production of the same protein


normal	AUG GCC TGC AAA CGC TGG met ala cys lys arg trp
silent	AUG GCT TGC AAA CGC TGG

B. Nonsense mutation happens when point mutation results in the production of a stop codon

TAA, TAG, TGA

mRNA STOP CODONS		UAG, UGA, UAA				
normal		GCC	TGC	AAA	CGC	TGG
-	met	ala	cys	lys	arg	trp

nonsense met ala CC let's crise muration happens when point mutation results in the place of a different protein

DELETION & INSERTION

Deletion	1 nucleotide is deleted or is gone
Insertion	Addition of an extra nucleotide along
	the line

normal	AUG	GCC	TGC	AAA	CGC	TGG
	met	ala	cys	lys	arg	trp
frameshift (deletion -1)	AUG	GC.	TGC	AAA	CGC	TGG
	met	ala	gli	u a	sn a	ala
frameshift (insertion +1)	AUG	GCC	C TGC	AAA	CGC	TG
	met	ala	leu g	ıln t	hr l	eu
insertion +1, deletion -1	AUG	GCC	C TG(AA.	A -GO	; TG

In **deletion**, there is a **frameshift to the right** because they keep on borrowing or robbing from their neighbour codons

In ${\it insertion},$ there is a ${\it frameshift}$ to the left because of the addition of an extra nucleotide