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❖ Property 4 
If L-1G(s) = g(t), then L-1{e-at G(s)} = u(t – a) × g(t – a) 

: Y(s) = {e-at G(s)}
 

 

❖ Property 5 
⬧ If the Laplace transform contains the factor s, the inverse 

of that transform can be found by suppressing the factor s, 
determining the inverse of the remaining portion of the 
transform and finally differentiating the inverse with respect 
to t.  
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One of the important theorems of Laplace transform is the 
convolution theorem. It is used in constructing inverses 
especially for linear differential equations with constant 
coefficients. 

The function, ξξξ d )g() -t(f=)t)(g* f( ∫
t

0

 

is called the  of the functions f and g. 
 

f * g = g * f 
f * (g * h) = (f * g) * h 

f * (g + h) = f * g + f * h 

Commutative 
Associative 
Distributive 

 
• Theorem 1 

If F(s) and G(s) are the Laplace transforms of f(t) and g(t) 
respectively, then the Laplace transform of the convolution    
f * g is the product F(s) G(s). 

• Theorem 2 
If L-1{F(s)} = f(t) and L-1{G(s)} = g(t), then 

L-1{F(s) G(s)} = (f * g)(t) 

duu)  - g(t )u(f=∫
t

0

When g(t) = 1 and L{g(t)} = G(s) = 1 / s, the convolution 
theorem implies that the Laplace transform of the integral of 

f is:           
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The inverse form is: 
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Integral Equation 

- an equation in which the unknown, call it y(t), occurs in the 
integrand pf an integral (and may also occur outside the 
integral) 

- can be solved by Laplace transformations if the integral can 
be written as a convolution 

Volterra Integral Equation 

τττ d) -h(t )(f+)t(g=)t(f ∫
t

0

 

The functions g(t) and h(t) are known. 
 

THE RECTANGULAR PULSE FUNCTION 

 
The flow rate would be held at h for duration of tw units of 

time. The area under the curve could be interpreted as the 
material delivered to the tank (= htw). Mathematically, the 
function f(t) is defined as 
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The Laplace transform of the rectangular pulse can be 
derived by evaluating the integral between t = 0 and t = tw 
because f(t) is zero everywhere else: 
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For a unit rectangular pulse, h = 1 / tw and the area under 
the pulse is unity. 
 

IMPULSE FUNCTION 

- A limiting case of the unit rectangular pulse is the  or 

, which has the symbol δ(t). This function 
is obtained when tw→ 0 while keeping the area under the 
pulse equal to unity; a pulse of infinite height and infinitesimal 
width results. 

 

The δ(t) function is an example of a distribution or 
generalized function. It has the following properties: 
 δ(t) = 0 if t ≠ 0  δ(0) is not defined 

 1= dt )t(∫
∞
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δ   If g(t) is a continuous function on 

(-∞, ∞), then g(0)= dt )t( )t(g∫
∞
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Intuitively, we may think of δ(t) as an approximation of a 
physical transfer of one unit of charge at time zero. It can be 
shown that if a is a constant, then 
 δ(t – a) = 0 if t ≠ a  If g(t) is a continuous function 

on (-∞, ∞), then 

g(a)= dt )a-t( )t(g∫
∞
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 1= dt )a - t(∫
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From these formulas, we get that
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Thus formally, )t(H=dt )t(∫
∞-

δ
t  

 

And δ(t) may be considered, in some sense, to be the 
derivative of the Heaviside function.  
 

Proceeding formally, sa-st-
∞

0
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In particular, 1=dt) t( e=(t)}{  st-
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  a=(t)}{a  δ  
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