y = ex

exponential functions of the form $f(x) = a^{\infty}$ have a special mathematical property The graphs of their gradient functions are a similar shape to the graphs of the functions themselves.

if
$$y = e^x$$
 then $\frac{dy}{dx} = e^x$

$$if y = e^{kx}$$
 then $\frac{dy}{dx} = ke^{kx}$

logarithms natural

grouph of y= ln x is a reflection the graph $y = e^x$ in the line y = xof the γY $y = e^{x}$

y = ax then the grouph of logy Ÿ against log x will be a strought with gradient n and vertical intercept Log a. logyn

logarithms

the inverse of exponential functions are logarithms.

 $\log_a n = x \iff a^x = n$

laws of logs.

 $\log_a x + \log_a y = \log_a x y$ (multi law) $\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$ (div law)

 $\log_{\alpha}(x^{\kappa}) = K \log_{\alpha} x$ (power law)

Special cases: $\log\left(\frac{1}{x}\right) = \log_{\alpha}(x^{-1}) = -\log_{\alpha}x$

non-linear data

an use logarithms to model Ot not - linear relationship as the equation of a straight line. This can be useful when plotting a graph to Look at the link between two variables.

y = M x + cloq y = n loq x + loq a

	J	J		J		J	
							Ī

variable	gradient	variable	constant
----------	----------	----------	----------