DISCUSSION:

- I. Jet Flame Physical Description
- > As the fuel flows along the flame axis, it diffuses radially outward, while the oxidizer diffuses radially inward.
- > The flame surface can be defined as:

Flame Surface
$$\equiv \frac{\text{Locus of points where}}{\Phi \text{ equals unity}}$$

- > The products formed at the flame surface diffuse radially both inward and outward
- > An overventilated flame is where there is more than enough oxidizer in the immediate surroundings to continuously burn the fuel
- > Underventilated flame is the opposite of an overventilated flame
- > Flame length for an overventilated flame is determined at the axial location where:

$$\Phi(r=0, x=L_f)=1$$

> By ignoring the effects of heat released by reaction, the equation below provides a crude description

> By ignoring the effects of heat released by reaction, the equation below provides a crude desorblame boundaries when
$$Y_F = Y_{F, \, stoic}$$

$$Y_F = \frac{3}{8\pi} \frac{Q_F}{\mathcal{D}x} \left[1 + \frac{\xi^2}{4} \right]^{-2}$$
 > When r equals zero, as take length is approximately:
$$L_f \approx \frac{8}{8\pi} \frac{Q_F}{\mathcal{D}Y_{F, \, stoic}}$$

- > Flame length is proportional to volumetric flow rate of fuel
- > Flame length is inversely proportional to the stoichiometric fuel mass fraction
- > Since $Q_F = v_e \pi R^2$, various combinations of v_e and R can yield the same flame length
- > Since the diffusion coefficient D is inversely proportional to pressure, the height of the flame is independent of pressure at a given mass flow rate.

HISTORICAL THEORETICAL FORMULATIONS:

- i. Burke and Schumann (1928)
 - Constant velocity field parallel to flame axis
 - Reasonable predictions of L_f for round burners
- ii. Roper (1977)
 - Relaxed single constant velocity assumption
 - Provides extremely good predictions