
10 CHAPTER 2. DIMENSIONAL ANALYSIS AND SCALING.

Example 6 (Atomic explosion). Supose that there is an atomic explosion. In such an
explosion a lot of energy E is released instantaneoulsy in a point. A shockwave is then
propagated from it. In this process, we assume that the radius r of the shockwave, the air
density ρ, the time t and the energy E are the only dimensions that are involved in the law
of how the shockwave propagates. Then, we have

f(r, t, ρ, E) = 0.

Now that we have seen plenty of examples of laws, and seen that to all laws there is a
function associated to it, could you think of a law that has no f related to it? It is hard
to imagine it. Once we talk about relations between dimensions/units/quantities, equations
appear. And, from each equation, we get a law!

Laws are important because they give as relations between the variables involved. If we
know the law, then we know exactly their relation, but just knowing that there is a law tells
us that there is some relation.

A unit free law is a law that does not depend on the choice of units. More concretely,
given a law that depends on n quantities q1, . . . , qn and m < n units L1, . . . , Lm,

f(q1, . . . , qn) = 0,

and for any n λi > 0, the law is also true for the new variables q̂i formed by the new units
L̂i = λiLi. That is,

f(q̂1, . . . , q̂n) = 0,

Example 7. An example of a unit free law is

f(x, g, t) = x− 1

2
gt2 = 0, (2.1)

where x denotes position (L), g the constant of the gravitational field (L/T 2) and t time
(T ).

If L̂ = λ1L, T̂ = λ2T then, since g has units in L/T 2, we get that

f(x̂, ĝ, t̂) = 0

if and only if Equation (2.1) is also satisfied.

2.3 Pi theorem.

Theorem 8. Let
f(q1, . . . , qn) = 0

be a unit free physical law that relates the dimensioned quantities q1, . . . , qn. Let L1, . . . , Lm
(where m < n) be the fundamental dimensions with

[qi] = L
a1,i
1 · · ·Lam,im .
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18 CHAPTER 3. PERTURBATION METHODS.

3.1 Regular perturbations.

The basic idea behind regular perturbations is the one behind Example 13: We do not need
to perform any change in the equation and the Taylor expansion works fine.

Example 16. Consider the initial value problem{
mv′ = −av + bv2

v(0) = V0
,

with b� a.

First, we introduce dimensionless variables

y =
v

V0

, τ =
at

m
,

obtaining the scaled initial value problem{
ẏ = −y + εy2

y(0) = 1
, (3.1)

where ε =
bV0

a
� 1.

After this change of variables, the solution to Equation (3.1) when ε = 0 is

y0(t) = e−t.

Now, performing the ansatz that solutions to Equation (3.1) are of the form

y(t) = y0(t) + εy1(t) + ε2y2(t) + · · ·

and substituting it into Equation (3.1) we obtain

y′0(t)+εy′1(t)+ε2y′2(t)+h.o.t. = −y0(t)−εy1(t)−ε2y2(t)+ε
(
y0(t) + εy1(t) + ε2y2(t)

)2
+h.o.t.

which is equivalent to,

y′0(t) + εy′1(t) + ε2y′2(t) + h.o.t. = −y0(t)− εy1(t)− ε2y2(t) + εy0(t)2 + ε22y0(t)y1(t) + +h.o.t.

From this last equality we get

y0(t) = e−t,
y1(t) = e−t − e−2t,
y2(t) = e−t − 2e−2t + e−3t.
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30 CHAPTER 4. CALCULUS OF VARIATIONS.

Notice that in the definition of directional derivative we are using an auxiliary construc-
tion: a function from R to R given by

ε→ J(y0 + εv).

Exercise 35. Compute the directional derivatives of the following functionals at the specified
point y0 and with direction v:

1.

J(y) =

∫ 1

0

y2dx, y0 = cos(x), v = sin(x).

2.

J(y) =

∫ 1

0

y′2dx, y0 = cos(x), v = sin(x).

3.

J(y) =

∫ 1

0

cos(y)dx, y0 = x, v = x2.

Now, with the help of directional derivatives we can give necessary conditions for the
existence of minima/maxima of functionals.

Theorem 36. Let J : A ⊂ X → R be a functional defined on an open subset of a normed
vector space X . If y0 ∈ A is a minimum (maximum) of J , then

δJ(y0, v) = 0

for all v where the directional derivative exists.

Exercise 37. Consider the functional J : C0([2, 4],R)→ R,

J(y) =

∫ 4

2

y(x)2dx.

Prove that y0(x) = 0 is a minimum and check that

δJ(0, v) = 0

for all v ∈ C0([2, 4].

4.3 The simplest problem.

The simplest problem in calculus of variations is to consider the functional

J(y) =

∫ b

a

L(x, y, y′)dx (4.1)

defined for functions y ∈ C2[a, b] with the extra condition y(a) = A, y(b) = B. The function
L should satisfy that it is twice differentiable in [a, b]× R2.

When computing direrctional derivatives it is required that v(a) = v(b) = 0, so J(y+εv)
is well-defined.
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4.5. MORE PROBLEMS. 33

4.4.2 Several functions.

Another way is by allowing several functions involved. For example, if two are involved, we
get the functional

J(y) =

∫ b

a

L(x, y1, y
′
1, y2, y

′
2)dx,

with boundary conditions y1(a) = A1, y2(a) = A2, y1(b) = B1, y2(b) = B2. In this case, we
get the system of equations 

∂y1L−
d

dx
∂y′1L = 0,

∂y2L−
d

dx
∂y′2L = 0.

4.4.3 Natural boundary conditions.

Another way of generalizing the Euler-Langrange equations is by allowing one of the bound-
aries free. For example, consider the functional∫ b

a

L(x, y, y′)dx,

with boundary conditions y(a) = A and y(b) free. In this case, we get the system of equations{
∂yL−

d

dx
∂y′L = 0,

∂y′L(b, y(b), y′(b)) = 0.

4.5 More problems.

Exercise 44. Find the extremal paths connecting two points lying on a sphere.

Exercise 45. Find the extremal paths connecting two points lying on a cylinder.

Exercise 46. Find the extremals of

1.

J(y) =

∫ 1

0

(y2 + y′2 − 2y sin(x))dx,

where y(0) = 1 and y(1) = 2.

2.

J(y) =

∫ 2

1

y′2

x3
dx,

where y(1) = 1 and y(2) = 0.
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34 CHAPTER 4. CALCULUS OF VARIATIONS.

3.

J(y) =

∫ 2

0

(y2 + y′2 + 2yex)dx,

where y(0) = 0 and y(2) = 1.

Exercise 47. Find the Euler-Lagrange equation of the functional∫ b

a

f(x)
√

1 + y′2dx,

and solve it for y(a) = A, y(b) = B.

Exercise 48. Find an extremal for

J(y) =

∫ 2

1

√
1 + y′2

x
dx,

where y(1) = 0 and y(2) = 1.

Exercise 49. Show that the area of a surface given by the graph of a function z = f(x, y)
defined on a domain D is given by the double integral∫∫

D

√
1 + (∂xf)2 + (∂yf)2dxdy.

It can be proved that a minimal surface satisfies the PDE

(1 + (∂xf)2)∂yyf − 2∂xf∂yf∂xyf + (1 + (∂yf)2)∂xxf = 0. (4.4)

Prove that the surface given by z = arctan yx satisfies Equation (4.4).
Could you give an idea of the proof of Equation (4.4)?

Exercise 50. Find the extremals of

1.

J(y) =

∫ 1

0

(y′2 + y2)dx,

where y(0) = 1 and y(1) free.

2.

J(y) =

∫ e

1

(
1

2
x2y′2 − 1

8
y2

)
dx,

where y(1) = 1 and y(e) free.
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5.3. CHAOTIC SYSTEMS. 41

Exercise 73. Convince yourself that the discrete dynamical system defined on the unit
interval [0, 1]

xn+1 = f(xn),

where

f(x) =

{
2x, x < 1

2

2− 2x, x ≥ 1
2

is chaotic. That is, prove that it has a dense set of periodic orbits and its sensitive to initial
conditions.

Exercise 74. Convince yourself that the discrete dynamical system defined on the circle
[0, 1]/Z

xn+1 = f(xn) (mod 1),

where
f(x) = 2x (mod 1)

is chaotic. That is, prove that it has a dense set of periodic orbits and its sensitive to initial
conditions.

Where could we find this dynamical system?
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50 CHAPTER 6. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS.
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54 CHAPTER 8. THEORY OF TRANSFORMS.

We usually denote by capital letters the transformed function: L(y) = Y.

Exercise 98. Compute the Laplace transforms of the following functions:

1. 1.

2. t.

3. tn.

4. eat.

The inverse of the Laplace transfrom is defined as

L−1(Y )(t) =
1

2πi

∫ a+i∞

a−i∞
Y (s)estdt,

where the integration path is a vertical line on the complex plane from bottom to top and
a is chosen in a way that all singularities of the function Y lie on the left side of the vertical
line with real part a.

The Laplace transform satisfies very nice properties.

Theorem 99. The Laplace transform satisfies that

L(y(n))(t) = snY (s)−
n−1∑
k=0

sn−k−1y(k)(0).

Theorem 100. Let’s define the convolution of two functions y1, y2 : [0,∞)→ R as

(y1 ∗ y2)(t) =

∫ t

0

y1(t− s)y2(s)ds.

Then, the Laplace transform satisfies that

L(y1 ∗ y2)(s) = Y1(s)Y2(s).

Furthermore,
L−1(Y1Y2)(t) = (y1 ∗ y2)(t).

Exercise 101. Prove Theorems 99 and 100.

Exercise 102. Prove that the Laplace transform defines a linear map. That is, L(af+bg) =
aL(f) + bL(g), where a and b are constants.

Have a look at Table 8.1, where some of the most common Laplace transforms appear.

Exercise 103. With the help of Laplace transforms, solve the following problems:
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60 CHAPTER 9. INTEGRAL EQUATIONS.

Observation 112. Notice that both problems look similar. They only differ on the fact
that for the Volterra equations the limits of integration depend on x, while for the Fredholm
are fixed. As we will see, this small detail changes dramatically the way each problem is
addressed.

Let’s discuss in more detail these equations. Notice that both equations can be written
in the form

(K − λId)u = f, (9.3)

where K denotes the linear integral operator. Hence, the equations will have a solution u if
the function f is on the range of the linear operator K−λId. For example. if it is invertible:

u = (K − λId)−1f.

Observation 113. If the operator K − λId fails to be invertible, it is still possible that for
some (but not all) f Equation (9.3) has solutions.

To study the invertibility of K − λId it is important to understand for which λs the
eigenvalue equation

Ku = λu

is satisfied. For these, invertibility will fail.
The following exercise shows why studying the spectrum of a linear operator A is useful

for solving linear systems.

Exercise 114. Consider the real symmetric n× n matrix A. Give a solution of the nonho-
mogeneous system

Av = λv + f

in terms of the eigenvalues and eigenvectors of the matrix A. Use the fact that there exists
an orthogonal basis of eigenvectors, and that the eigenvalues are all real.

9.1 Volterra equations.

As said before, Volterra equations are of the form∫ x

a

k(x, s)u(s)ds = λu(x) + f(x), a ≤ x ≤ b. (9.4)

There are special cases where the Volterra equation has an easy solution. Let’s see some
of these.

Exercise 115. Suppose that the kernel k does not depend on the first variable x (k(x, t) =
g(t)). Prove that a solution of Equation (9.4) satisfies the ODE

u′(x) =
1

λ
(g(x)u(x)− f ′(x)).
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9.2. FREDHOLM EQUATIONS. 63

In this special case, the solution to the Fredholm equation (9.8) can be reduced to a finite
dimensional linear algebra problem. Notice that it is equivalent to

n∑
i=0

αi(x)

∫ b

a

βi(y)u(y)dy − λu(x) = f(x). (9.9)

Let’s denote by (f, g) the integrals ∫ b

a

f(y)g(y)dy.

Multiplying Equation (9.9) by βj(x) and integrating with respect x we obtain the n
linear equations of the form

n∑
i=0

(αi, βj)(βi, u)− λ(βj, u) = (βj, f).

This system is of the form
Aw − λw = b, (9.10)

where A is the matrix with (i, j) entry (αi, βj), and w and f are vectors with entries (βi, u)
and (βj, fj).

If the linear system (9.10) has a solution w, then a solution to the Fredholm equation
with degenerate kernel will be

u(x) =
1

λ

(
−f(x) +

n∑
i=0

αi(x)wi

)
.

Observation 123. Notice that the linear system (9.10) has a solution for all f if and only
if λ is not an eigenvalue of the matrix A.

It is easily proven in this case the following theorem, sometimes called the Fredholm
alternative.

Theorem 124. Consider the Fredholm equation (9.8) with degenerate kernel. Then, if λ is
not an eigenvalue of the matrix A, the problem has a unique solution. If, on the contrary,
it is an eigenvalue, either the problem has none or infinite number of solutions.

Exercise 125. Solve the Fredholm equation∫ 1

0

xtu(t)dt+ u(x) = cos(2πx).

Exercise 126. Solve the Fredholm equation∫ 1

0

(xt+ x2t2)u(t)dt+ u(x) = cos(2πx).
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Appendix A

Solving some ODEs.

A.1 First order linear ODEs.

First order linear ODEs are of the form

y′ + p(x)y = q(x). (A.1)

First, we multiply Equation (A.1) by a function f(x), obtaining

f(x)y′ + f(x)p(x)y = f(x)q(x).

We will choose f(x) such that
f ′(x) = f(x)p(x). (A.2)

Observation 130. The solution to Equation (A.2) is

f(x) = Ke
∫
p(x)dx.

Thus, we get that
(f(x)y)′ = f(x)p(x),

so

y(x) =
1

f(x)

∫
f(x)p(x)dx.

A.2 Second order linear ODEs.

These are ODEs of the form

y′′ + p(x)y′ + q(x)y = r(x). (A.3)

First, we find solutions to the homogeneous equation

y′′ + p(x)y′ + q(x)y = 0.
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