- 22. Prove analytically that the sum of the squares of the medians of a triangle is equal to three-fourths the sum of the squares of the sides.
- 23. Prove analytically that the line segments joining the midpoints of opposite sides of a quadrilateral bisect each
- **24.** Prove that the coordinates (x, y) of the point Q that divides the line segments from $P_1(x_1, y_1)$ to $P_2(x_2, y_2)$ in the ratio r_1 : r_2 are determined by the formulas

$$x = \frac{r_1 x_2 + r_2 x_1}{r_1 + r_2}$$
 and $y = \frac{r_1 y_2 + r_2 y_1}{r_1 + r_2}$

(*Hint*: Use the reasoning of Problem 5.)

25. Find the coordinates of the point Q on the segment P_1P_2 such that $\overline{P_1Q}/\overline{QP_2} = \frac{2}{7}$, if (a) $P_1 = (0, 0)$, $P_2 = (7, 9)$; (b) $P_1 = (-1, 0), P_2 = (0, 7);$ (c) $P_1 = (-7, -2), P_2 = (2, 7);$ (d) $P_1 = (1, 3), P_2 = (4, 2).$

Ans. (a)
$$(\frac{14}{9}, 2)$$
; (b) $(-\frac{7}{9}, \frac{14}{9})$; (c) $(-5, \frac{28}{9})$; (d) $(\frac{13}{9}, \frac{32}{9})$

Preview from Notesale.co.uk

Preview from Page 9 of 9

Page 9 of 9