
Python For Beginners 7

3. Then cd followed by your username to enter your user folder.

We are now in: C:\Users\<username>

4. Then cd Desktop to enter your Desktop folder.

We are now in: C:\Users\<username>\Desktop

5. Then finally cd followed by your project folder name to enter the project folder you created on
your desktop.

We are now in: C:\Users\<username>\Desktop\<project-folder-name>

Navigating step by step this way is just an alternative way of navigating like you would in a File Explorer.
In the File Explorer, If we started in the C drive we could double click the Users folder to move there, then
your username folder, then your Desktop folder, and so on.

cd on MacOS or Linux

For example, if your project folder is on your Desktop, you could enter:
cd /home/<username>/Desktop/<project-folder-name> .

Alternatively, you could take it step-by-step and enter:

1. cd / to enter your root folder

We are now in: /

2. Then cd home to enter the home folder within your root folder

We are now in: /home

3. Then cd followed by your username to enter your user folder

We are now in: /home/<username>

4. Then cd Desktop to enter your Desktop folder

We are now in: /home/<username>/Desktop

5. Then finally cd followed by your project folder name to enter the project folder you created on
your desktop

We are now in: /home/<username>/Desktop/<project-folder-name>

If you are getting errors, make sure to check for typos. The directory you enter is case sensitive so make sure
words folders with capitals like Users and Desktop are capitalised.

Once you think you have reached your folder containing your Python script, entering dir (Window) or ls
(MacOS and Linux) will show you the files inside that folder. If you see the name of your Python script
(helloworld.py), you are in the correct folder.

Example on Windows

I have created a folder called "python-for-beginners" on my desktop that holds a file called helloworld.py

When I open the terminal, I can navigate to this folder using the command
cd C:\Users\TomDraper\Desktop\python-for-beginners

Preview from Notesale.co.uk

Page 7 of 120

Python For Beginners 12

To create a Boolean (true or false) variable, you can either give a variable a value of True or False (the first
character must be capitalised):

x = True

x = False

Booleans are useful when representing whether the state of something is 'on' or 'off', such as whether you are
currently logged in to an account, or whether your Bluetooth is enabled.

The name 'Boolean' is capitalised as it is named after the mathematician George Boole.

Comments
In the code snippets that follow, and throughout the rest of this course, comments will be used to try to explain
and clarify code. Comments are found in most programming languages and are plain English notes that the
programmer can use to try and explain what their code is doing. They are completely ignored by Python and
have no effect on what your program does. You could delete comments from your code, and it will work exactly
the same.

Comments in Python are written as a hashtag followed by your comment. For example:

This is a comment

You can write comments on a line of their own, or after a piece of code.

This is a comment
x = 76 # This is another comment

It's important to note that everything from the hashtag character onwards until the end of a line is considered part
of the comment. You are therefore unable to write a comment before a piece of code on the same line. The code
below would not have any effect:

This is a comment x = 76

Here, the entire line (including the x = 76) is considered a comment and the x = 76 would not be executed by
Python.

Multiline Comments

If you want to write a long comment that spans multiple lines, Python can do multi-line comments by containing it
between a pair of triple inverted commas ''' . All text between these triple inverted comments is considered a
comment. Although, the hashtag version is often preferred, the multiline comment is typically reserved to
describe the purpose of a large chunk of code.

Preview from Notesale.co.uk

Page 12 of 120

Python For Beginners 29

w = not True
x = (2 == 10) and (5 <= 100)
y = not (x or w)
z = (15 > 50) or y

What would be assigned to each of the variables w , x , y , z ? True or False ?

Answer

Variable w is False

Variable x is False

Variable y is True

Variable z is True

Variable w :

not True equals False

Variable x :

(2 == 10) and (5 <= 100) equals False and True which equals False

Variable y :

not (x or w) equals not (False or False) which equals not False which equals True

Variable z :

(15 > 50) or y equals False or True which equals True

Programming In Python

Control Structures
Programming languages use various 'control structures' to control the flow of execution. Typically, when code
begins running, it begins executing lines of code one after another. Control structures allows the code to jump
and divert to different areas of the code based on whether a given condition is satisfied.

The two main control structures within Python are called 'if statements' and 'loops'. These are common
programming structures and found within most languages. If statements allow you to execute a particular chunk
of code if and only if a given condition is satisfied. Loops allow you to repeatedly execute the same chunk
of code until a condition becomes satisfied.

If Statements
If statements are a type of control structure. They can divert the flow of execution and stop Python from simply
executing line-after-line sequentially. They offer a way to produce dynamic behaviour within your program.

If statements create a structure such that a given block of code is only executed if a given condition is
evaluated to True .

If

Preview from Notesale.co.uk

Page 29 of 120

Python For Beginners 30

An if statement in Python uses the if keyword, followed by the condition you want to check, followed by a
colon. If this condition is found to be True , the block of code below condition will be executed. For Python to
know that this code block is within the if statement, it must be indented. This means that each line of the code
block should start with four spaces, but two spaces would also work. This choice of indentation size is
completely up to the programmer, as long as you remain consistent with the size chosen.

if condition:
 # Execute this indented block of code
 # ...

Continue with the rest of the program
...

Your text editor can often be configured to insert the correct indentation with a single click of the tab key.

Note: The tab key

A tab character is actually its own unique character and not just made up of multiple space characters. To
avoid having to repeatedly press the spacebar four times to create indentation, text editors for programming
are often configured to just produce four spaces instead of a tab character when the tab key is pressed.

An often cause of frustration with Python is that it will produce an error when tab characters and space
characters are mix-and-matched within indentation, even if they appear to be the same size. If you are
getting indentation errors when your indentation appears to be consistent and correct, you may have
pressed the tab character and actually inserted a tab character, so check the tab key configuration within
your text editors to ensure it only produces spaces.

For example:

month = 'December'
day = 25

if (month == 'December') and (day == 25):
 print('Merry Christmas!')
 print('And a Happy New Year!')

The if statement in the code above checks whether month is equal to 'December' AND whether day is equal to
25 . Python will check this condition and evaluate it to either True or False . It will print the Christmas greeting to
the screen only if this condition is found to be True .

The program initially assigns the month and day variables with the value 'December' and 25 . As a result, and
when this program is run the condition will be evaluated to True and it will print:

Merry Christmas!
And a Happy New Year!

If the month were changed to 'February' , the condition (month == 'December') and (day == 25) would be False and
nothing would be printed to screen.

It only makes sense for the condition within an if statement to contain a variable, as this allows for dynamic
behaviour because the evaluation of the condition can change if the value of the variable changes. If the if
statement is run at multiple points in the program, sometimes it may execute the code block, and other times it
may ignore it as the values of variables change throughout the life of the program.

Preview from Notesale.co.uk

Page 30 of 120

Python For Beginners 35

get chance to review the condition age > 18 , even though this is True . Therefore, the order of your elif
conditions is important and can affect the result.

Exercise - Odd or Even
You are given a variable that can hold a number. Write an if statement that checks the value of the
number to see whether it is odd or even.

If it is odd, your program should print 'odd'.
If it is even, your program should print 'even'.

Copy the code below containing the number variable to use.

number = 503

Code to check whether number is odd or even
If number is even print 'even', otherwise print 'odd'
...

Hint 1

We can check whether a value is even using the modulus operator % .
Remember: A % B results in the remainder once A has been cleanly divided into B.

Hint 2

If number % 2 is equal to 0, it means A can be cleanly divided by 2, with no remainder left over. This means
number must be even.

If number % 2 is equal to 1, it means if A is divided by 2, it leaves a remainder of 1 left over. This means
number must be odd.

Answer

With the example number of 503, your program should print 'odd', but it should adapt when this number is
changed.

Answer 1

We can use number % 2 to check whether number is odd or even.

If number % 2 results in 0, number divides cleanly by 2, and therefore it is even.

If number % 2 results in 1, number does not divide cleanly by 2, leaving a remainder of 1, and
therefore it is odd.

We can use an if statement to check whether number is even first, and if not, we can use an elif statement
to check whether it is odd.

number = 503

if number % 2 == 0:
 print('even')
elif number % 2 == 1:
 print('odd')

Preview from Notesale.co.uk

Page 35 of 120

Python For Beginners 37

year = 2016

Code to check whether the year is a leap year
...

Hint 1

We can check to see if the year is perfectly divisible using the modulus operator % . If the year modulus a
value is equal to 0, the year is perfectly divisible by that value.

Answer

There are many different solutions to this problem. All of them have slight advantages and disadvantages.

Answer 1

We could check the two conditions in turn, but this is a bit repetitive, and the computer may waste time
evaluating (year % 4) == 0 and (year % 100) == 0 two separate times. Although the computer will process our
program extremely fast and in practice we would never notice if our program was taking very slightly longer
due to unnecessarily repeating computations. It's good practise to try and avoid redundant computations
when you can.

We also have identical results for two of the if statements code blocks: print(year, 'is a leap year') . It's
good practise to try and avoid repeating your code, as it can make your program more difficult to understand.
It also makes your code easier to maintain as you remove the risk of altering a line of code but forgetting to
alter the code in all places where that same line is used. There is almost always a way to eliminate duplicate
lines and make your code more concise.

year = 2016

if (year % 4) == 0 and (year % 100) == 0 and (year % 400) == 0:
 # Perfectly divisible by 4, 100 and 400
 print(year, 'is a leap year')
elif (year % 4) == 0 and (not (year % 100) == 0):
 # Perfectly divisible by 4, but not 100
 print(year, 'is a leap year')
else:
 print(year, 'is not a leap year')

Answer 2

We could use an OR to join the two conditions that make a leap year. But the computer still has to
unnecessarily evaluate (year % 4) == 0 and (year % 100) == 0 twice. The condition also becomes very long
and difficult to read.

year = 2016

if ((year % 4) == 0 and (year % 100) == 0 and (year % 400) == 0) or ((year % 4) == 0 and (not (year % 100) == 0)):
 # Perfectly divisible by 4, 100 and 400
 print(year, 'is a leap year')
else:
 print(year, 'is not a leap year')

Preview from Notesale.co.uk

Page 37 of 120

Python For Beginners 40

Within the loop we may want to know the number of times we have looped so far. Is this the first time we are
executing this code? Or the tenth? This is where the 'for loop' variable comes in. The 'for loop' automatically
creates a new variable for us to use within this loop. With each loop, this variable will be assigned the current
loop number. In programming languages, whenever we are in a situation that involves counting, it always
begins from zero. This can be confusing at first and will take a while to get used to. The 'for loop' variable
follows this rule. During the first loop it will hold the value 0, during the second it will hold 1, and so on. Because
we begin from 0, during the last loop of the code block it will hold the value N-1 . We can use this variable to
produce different behaviour within the code block depending on the number of times we have looped. Just like
any variable, we can give it any name we like, although quite often this variable is given the name i .

If we wanted to create a 'for loop' that loops 5 times, we would write:

for i in range(5):
 print(i)

This will print:

0
1
2
3
4

The 'for loop' variable i takes the values from 0 to 4, but this is still 5 unique values, so the loop has looped 5
times.

On the first loop, i first takes the value 0. It then prints this value and returns to the top of the 'for loop' to get
incremented by 1. Then it executes the same code block again but this time i holds a value of 1. This continues
until i is no longer less than 5 and it exits the 'for loop' and continues with the rest of the program.

If we wanted to, we could correct the fact that the loop counter begins at zero, and instead print the numbers 1 to
5 by adding 1 to i each time we print.

for i in range(5):
 print(i+1)

This will print:

1
2
3
4
5

Starting Value

We can also specify an optional starting value.

Preview from Notesale.co.uk

Page 40 of 120

Python For Beginners 47

Tuples

Sets

and each of them have different properties and uses.

Previously our variables would hold a value that had a data type, such as holding the value 4, which is an
integer. We have now seen that our variables can hold a value that is a data structure (which holds other
values). These Python data structures (list, dictionaries, tuples, and sets) are in fact data types themselves, just
like integer, float, string or Boolean. They just happen to be data types that have the ability to hold other data
types.

Lists
Lists (sometimes referred to as arrays) are the first data structure in Python that we will cover. Just like a
shopping list, a Python list just holds a series of values.

A list can:

hold any number of values

add or remove items at any time

hold values of any data type

When you create a Python list, you create a sequence of storage spaces in memory called elements. Each of
these elements can hold a value of any data type. To be able to access a particular space, each of these
spaces are labelled by an numerical index value. The first space has an index of 0, the second space has an
index of 1, and so on.

In the example above, we represent a person as a list of their values. Although the person variable points to the
first element of the list ('Bob'), it can access any value by using its index. At index 0 of the list is the person's
name, at index 1 is their age and their gender is at index 2. If we wanted to, we could extend the list and create a
space at index 3 to hold another value.

Preview from Notesale.co.uk

Page 47 of 120

Python For Beginners 48

Creating a List
Python uses the square brackets [] to create a list of items.

person = ['Bob', 25, 'male']

Alternatively, we can create an empty list and add values later. We can create an empty list using an empty set
of square brackets [] . We can add items to the end of our list using person.append() with the value to append
within the parenthesis.

person = [] # Create an empty list and assign it to the person variable
print(person)
person.append('Bob')
print(person)
person.append(25)
print(person)
person.append('male')
print(person)

Once run, this code will print:

[]
['Bob']
['Bob', 25]
['Bob', 25, 'male']

person = ['Bob', 25, 'male']
print(type(person))

If we print out the type of person , it will display <class 'list'> . This confirms that a 'list' is in fact a Python data
type.

Accessing Elements
Once we have a list containing values, we can access these values by using the index of a specific value.

Preview from Notesale.co.uk

Page 48 of 120

Python For Beginners 49

person = ['Bob', 25, 'male']

print(person[0])
print(person[2])

Once run, this code would print:

'Bob'
'male'

List Length
Python can calculate the length of a list using len() , short for 'length'.

colours = ['red', 'blue', 'green']

list_length = len(colours) # Assign length value to list_length
print(list_length)

Add two new items to the colours list
colours.append('orange')
colours.append('purple')

list_length = len(colours) # Assign the new length value to list_length
print(list_length)

Once run, the code above will print:

3
5

To access the final element in a list, we would need to know the index of that value. If we do not know its index,
we could calculate it using the length of the list.

Preview from Notesale.co.uk

Page 49 of 120

Python For Beginners 51

This is convenient way of accessing the last few elements without having to first calculate the length of the list
using len() .

person = ['Bob', 25, 'male']

print(person)
print(person[2])
print(person[-1])

person.append('English')

print(person)
print(person[2])
print(person[-1])

One run, the code above will print:

['Bob', 25, 'male']
'male'
'male'
['Bob', 25, 'male', 'English']
'male'
'English'

Initially, the value 'male' can be accessed by both index 2 and index -1. Once another value is appended to
the end of the list, index 2 still accesses 'male' , but index -1 accesses the new value added to the end of the
list.

Index Out of Bounds

When using an index, you need to make sure that the index you use is valid.

With list of 3 elements, only indexes between 0 to 2, or -3 to -1 are valid, any higher or lower and you would
run off the end of the list and you would get an error.

Preview from Notesale.co.uk

Page 51 of 120

Python For Beginners 53

person[0] = 'Wendy'
print(person)

Access the last element and change it to be 'female'
person[-1] = 'female'
print(person)

Once run, the code above will print:

['Bob', 25, 'male']
['Bob', 34, 'male']
['Wendy', 34, 'male']
['Wendy', 34, 'female']

Iterating Over Values
We can now combine loops with lists to iterate over values within a list.

With a list containing 5 elements, we can use a 'for loop', with range(5) , to loop 5 times. The loop will run each
time, and the variable i will be assigned the 5 values, from 0 to 4. This happens to perfectly match the possible
indices of the list and we can use variable i to access the value at each index from 0 to 4 and immediately print
it out.

my_list = [10, 20, 30, 40, 50]

for i in range(5):
 print(my_list[i]) # Print the value at index i

Once run, this code would print:

10
20
30
40
50

Although often, we may not immediately know the length of a list, or the length of the list may change, so it is
better to replace 5 with the length of the list, using len(my_list) .

my_list = [10, 20, 30, 40, 50]

for i in range(len(my_list)):
 print(my_list[i]) # Print the value at index i

This would produce the same output.

For Each Loops

'For loops' offer an alternative way to loop over values of a list. Rather than using range(N) to give our counting
variable i the value of numbers up to (not including) N, we can replace it with the actual list variable (e.g.,

Preview from Notesale.co.uk

Page 53 of 120

Python For Beginners 58

list_sum = 0
for i in range(20):
 # Access list element at index i
 # Increase list_sum by the value at this index
 list_sum += my_list[i]

print(list_sum)

Answer 2

Alternatively, we could use a 'for each loop' to loop through each value within the list, without needing to
access each value using its index. With each loop, the value variable will take the next value within the
list. We can then add this value to the list_sum variable.

my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

list_sum = 0
Iterate over each value in the list
Each time store it in the variable value
for value in my_list:
 # Increase list_sum by this value
 list_sum += value

print(list_sum)

Exercise - Find Value
You're given an extensive list of numbers. Write a program to check whether a certain value is within this
list. Print 'Yes' if so, otherwise print 'No'.

Copy and complete the code below containing the list, and the value to check for.

numbers = [871, 143, 297, 849, 128, 574, 755, 133, 331, 448, 147, 168, 996,
 459, 722, 481, 239, 674, 101, 256, 477, 633, 901, 898, 208, 649, 435, 596,
 831, 230, 893, 408, 969, 180, 141, 422, 417, 511, 623, 899, 267, 871, 639,
 126, 262, 804, 269, 526, 401, 689, 590, 645, 785, 949, 638, 954, 746, 445,
 877, 839, 878, 946, 740, 443, 737, 334, 559, 573, 790, 794, 146, 639, 114,
 132, 730, 757, 954, 791, 257, 292, 809, 215, 931, 895, 682, 435, 739, 684,
 716, 415, 880, 144, 638, 959, 206, 967, 269, 245, 368, 305]

value_to_check_for = 730

Check whether 730 is within the numbers list
...
Print 'Yes' or 'No'

Hint 1

We could loop over each value within the list and check each value to see if it matches.

Hint 2

Once the loop has finished, we will need to have remembered whether we found the value we were
searching for. We could create use a separate Boolean variable that is initially set to False before the loop
begins, and set to True within the loop when we find the value we are searching for.

Preview from Notesale.co.uk

Page 58 of 120

Python For Beginners 59

Answer

Your program should print 'Yes' . There are many viable solutions to this problem, but the method below is
the most straightforward.

We use a Boolean variable value_to_check_for to be the indicator as to whether we have seen the value we
are searching for. We scan through the list, checking whether each number is equal to the value to check for.
If a number is found, we set the value_to_check_for to be True , otherwise value_to_check_for will never
change from being False . Once we have finished looping through the list, we can simply check whether
value_to_check_for is True or False using an if statement to give our 'Yes' or 'No' answer.

numbers = [871, 143, 297, 849, 128, 574, 755, 133, 331, 448, 147, 168, 996,
 459, 722, 481, 239, 674, 101, 256, 477, 633, 901, 898, 208, 649, 435, 596,
 831, 230, 893, 408, 969, 180, 141, 422, 417, 511, 623, 899, 267, 871, 639,
 126, 262, 804, 269, 526, 401, 689, 590, 645, 785, 949, 638, 954, 746, 445,
 877, 839, 878, 946, 740, 443, 737, 334, 559, 573, 790, 794, 146, 639, 114,
 132, 730, 757, 954, 791, 257, 292, 809, 215, 931, 895, 682, 435, 739, 684,
 716, 415, 880, 144, 638, 959, 206, 967, 269, 245, 368, 305]

value_to_check_for = 730

Initially set found_number to False
If we find the number, we can change this to True
found_number = False

Loop through each number in the numbers list
for n in numbers:
 # Check if the number 'n' is equal to 730
 if n == value_to_check_for:
 # If so, remember that we've found the number!
 found_number = True

Print the result
if found_number:
 print('Yes')
else:
 print('No')

List Filter
There may be a situation where there is a certain type of item within a list that you no longer need and want to
remove. We could build a program that checks each item within a list to see whether it meets a certain condition
and deletes the item from the list if it does. This would essentially 'filter out' any items that do not meet the
condition.

Filtering by Data Type

The items within a list can be a mixture of different data types. We could build a program that loops over each
item in a list, checks whether each item is a certain data type (e.g., string by checking whether type(item) ==
str), and remove it if so.

The program below filters out any strings that are contained within the list.

my_list = ['red', 5.2, 10, 'orange', True, 'green', None, 14, 1.0, 'blue']

length_of_list = len(my_list)

Loop through each index value of my_list

Preview from Notesale.co.uk

Page 59 of 120

Python For Beginners 60

for i in range(length_of_list):
 item = my_list[i] # Get the item in the list at this index

 if type(item) == str: # Check if the item is a string
 del my_list[i] # Remove the item from the list

 However, we run into two problems when removing items this way:

1. When we use del my_list[i] we remove the item from the list, creating a gap in the list. To close this gap,
Python automatically moves all other following items one space to the left. For example, if we find a
string at index 2 and remove this item, the items at indices 3, 4, 5, 6... must shift across one space to
become 2, 3, 4, 5.... This means the next item we need to check has been moved from index 3 to index
2. This means that during our next loop, our loop counting variable i will be incremented to become 3,
and we would have skipped the next value which is now at index 2. We needed to have remained at
the same index, because that's where the next item will be after removing an item.

2. With a for loop, the proposed values that i will take during the loop are calculated a single time, at the
point that the for loop is first entered. If we have a list of 5 items, and create a loop to check each
index from 0 to 4, if at some point we remove an item, the items to the right will be shifted across one
space to fill the gap created, and the length of the list will decrease by one. This means that the final
index of the list changes from 4 to 3, and 4 is no longer a valid index. However, we have already
told the loop we are looping until i has taken the value of 4, and during the final loop, index 4 of the list
will be checked (which no longer exists), which will cause an error.

Preview from Notesale.co.uk

Page 60 of 120

Python For Beginners 77

person = ('Bob', 25, 'male')
print(type(person))

If we print out the type of person , it will display <class 'tuple'> .

Accessing Values
We can access tuple values in exactly the same way as a list.

person = ('Bob', 25, 'male')

print('The name is:', person[0])
print('The age is:', person[1])
print('The gender is:', person[2])

Once run, the code above will print:

The name is: Bob
The age is: 25
The gender is: male

Iterating Over Values
We can iterate over the values within a tuple in exactly the same way as we can with a list.

person = ('Bob', 25, 'male')

for value in person:
 print(value)

Once run, the code above would print:

Bob
25
male

Slices
Slices of tuples are also the same as lists, except a slice of a tuple results in a new tuple, rather than a list.

python_letters = ('p', 'y', 't', 'h', 'o', 'n')

print(python_letters[2:]) # From index 2 onwards
print(python_letters[1:3]) # From index 1 to index 2

Once run, the code above would print:

Preview from Notesale.co.uk

Page 77 of 120

Python For Beginners 80

Once run, the code above would print:

{'blue', 'purple', 'orange', 'green', 'red'}
{'purple', 'orange', 'green', 'red'}

.discard()

We can discard a named value from the set using .discard() , with the value within the parentheses. This works
exactly like .remove() , however if the value entered is not within the set, this will NOT cause an error.

Like with lists, Python can check for the presence of a given item is in a set using the in keyword. The code
value in my_set will return True if value is in the set named my_set , and False otherwise.

colours = {'red', 'blue', 'green', 'purple', 'orange'}

print(colours)
print('blue' in colours) # Check whether 'blue' is in colours - True or False

colours.discard('blue')

'blue' is no longer in the colours set
print(colours)
print('blue' in colours)

Once run, the code above would print:

{'blue', 'purple', 'orange', 'green', 'red'}
True
{'purple', 'orange', 'green', 'red'}
False

.pop()

If we want to retrieve and remove a random item from the list, we can use .pop() with no value within the
parentheses. .pop() will remove a value from the set and return it to you for you to assign to a variable or print
out.

colours = {'red', 'blue', 'green', 'purple', 'orange'}

print(colours)

Retrieve a value from the set and assign it to the colour variable
colour = colours.pop()

print('The colour we have popped is:', colour)
print(colours)

Once run, the code above would print:

{'blue', 'purple', 'orange', 'red', 'green'}
The colour we have popped is: blue
{'purple', 'orange', 'red', 'green'}

Preview from Notesale.co.uk

Page 80 of 120

Python For Beginners 81

Iterating Over Values
Just like with lists or tuples, we can loop over the values within a set.

colours = {'red', 'blue', 'green', 'purple', 'orange'}

for colour in colours:
 print(colour)

Once run, this code would print:

red
blue
green
purple
orange

Set Operations
Sets have their own operators that can take two sets and perform an action to create a new set.

Intersection &

The intersection operation will take two sets, A and B, and return a set containing only the values that appear
in both A and B.

set_a = {2, 4, 6, 8, 10}
set_b = {1, 2, 3, 4, 5}

print(set_a & set_b)

Once run, the code above would print {2, 4} .

Union |

The union operation will take two sets, A and B, and return a set containing the values that appear in either A
or B or both.

set_a = {2, 4, 6, 8, 10}
set_b = {1, 2, 3, 4, 5}

print(set_a | set_b)

Once run, the code above would print {1, 2, 3, 4, 5, 6, 8, 10} .

Difference -

The different operation will take two sets, A and B, and return a set containing the values within set A, with
all the values that are also in set B removed.

Preview from Notesale.co.uk

Page 81 of 120

Python For Beginners 97

expert has already produced a great solution that you could use. You can simply download a solution and import
the file into your code file using the import keyword, without having to manually copy and paste the parts that
you need.

A collection of related code files that can be imported and used within a program is called a 'library'. There are
Python libraries for every possible type of application. Python has libraries for everything from data visualisation
and graphing to image manipulation to libraries that can make web page requests.

The Python Standard Library

Python has a collection of official inbuilt libraries, called the Python Standard Library, which come preinstalled
when you install Python. These code files will live somewhere within the directory that Python is installed and
can be easily imported into any program you write.

These libraries include:

random - a library that generates random numbers

math - a library that contains lots of mathematical functions

datetime - a library for creating and dealing with dates and times

csv - a library for reading and writing .csv files

The full list and information about each library can be found here:

The Python Standard Library - Python 3.9.5 documentation

While The Python Language Reference describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that are commonly included in
Python distributions.

https://docs.python.org/3/library/index.html

Any library from The Python Standard Library can be easily imported by simply entering import followed by the
library name at the top of your code file.

For example:

Import all of the functions from within the math.py library
from math import *

Import all of the functions from within the random.py library
from random import *

Code using the math and random libraries
...

Installing a Package with Pip

Python libraries made by members of the community can be installed using a tool called 'pip'.

'pip' is a package manager for Python, and it can be used to fetch and download a specific library onto your
machine for you to use in your code.

This course will not require any libraries that must be installed on to your device using pip. However, you're
highly likely to require pip if you continue to use Python beyond a beginner level. Some basic instructions to
install and use pip can be found below.

Preview from Notesale.co.uk

Page 97 of 120

Python For Beginners 118

After the second use of sort_pass(numbers) , the two largest numbers are in their final sorted
positions.

After the third use of sort_pass(numbers) , the three largest numbers are in their final sorted positions,
which means the final fourth number must also be in its final position.

If we have a list of N numbers, we only have to use sort_pass(numbers) N-1 times until we have a completely
sorted list. On the N-1th time, placing the next largest value into it's correct place will also force the smallest
value into it's correct position on the far left.

Answer

If we say the numbers list has N numbers, to sort the list we would have to run the sort_pass function N-1
times.

On the first use, the largest number will be moved into place

On the second use, the second largest number will be moved into place

On the third use, the third largest number will be moved into place

On the (N-1)th use, the (N-1)th largest number will be moved into place

All numbers except one will have been moved into their final sorted position, which means the last number
would also have to be in its sorted position!

If we apply the sort_pass function any more than N-1 times, the list would still be fully sorted. The sort_pass
function would simply check each number, see they are all already in the correct order and not make any
switches.

We can find the length of the list using len(numbers) .

def sort_pass(numbers):
 for i in range(len(numbers) - 1):
 # If two numbers next to each other are the wrong way around
 if numbers[i] > numbers[i+1]:
 # Swap the two numbers at index i and i+1
 temp = numbers[i+1]
 numbers[i+1] = numbers[i]
 numbers[i] = temp
 return numbers

Define a function to sort a list of numbers
def sort(numbers):
 # Use sort_pass (len(numbers) - 1) times
 for i in range(len(numbers) - 1):
 numbers = sort_pass(numbers) # Sort the next biggest number
 return numbers

numbers = [5, 1, 9, 8, 3, 2, 6]
sorted_numbers = sort(numbers)
print(sorted_numbers)

Before You Go
Book Recommendations
Automate the Boring Stuff with Python - Al Swelgart

Preview from Notesale.co.uk

Page 118 of 120

