

- a. nitrogenous base
- b. nucleotide
- phosphorous c.
- d. sugar
- e. covalent bond (phosphodiester)
- f. hydrogenous (double & triple)

 $\rightarrow \rightarrow \rightarrow \mathbf{DNA} \rightarrow \mathbf{D}eoxyribo\mathbf{N}ucleic \mathbf{A}cid[nucleic acid polymer] \rightarrow the "Blueprint of Life"$

- \rightarrow contains cell's genetic material (instructions for cell functions & making of proteins)
- \rightarrow DNA \rightarrow composed of 2 nucleotide chains
- $\rightarrow \rightarrow \rightarrow$ **nucleotides** \rightarrow single subunits of DNA
- \rightarrow composed of deoxyribose sugar; phosphate; nitrogenous base
- \rightarrow nitrogenous base \rightarrow A[Adenine]; T[Thymine]; C[Cytosine]; G[Guanine]
- \rightarrow \rightarrow complementary base pairs

Pyrimidines];
	<u> </u>
OF N' OF N' H H Cytosine Thymine	1
PUDTE	
	of
	n
H N ^{NN2} H Guanine Adenine G A	

o.uk Adenine & Guanine [A & G] \rightarrow Purines \rightarrow double ring structures \rightarrow Pyrimidines \rightarrow tingle in structures \rightarrow Cytosine & Thymine [C & T] \rightarrow double by the venous bonds \rightarrow Alenine & Thymine [A & T] trial hydrogenous on S - Cytosine & Guanine [C & G] \rightarrow phosphodic (the conds (covalent bond) \rightarrow b/n the deoxyribose sugar f one nucleotide & the phosphate molecule of the next nucleotide \rightarrow hydrogenous bonds \rightarrow b/w the nitrogenous bases of 2 opposite ucleotides

 \rightarrow 2 strands of DNA \rightarrow antiparallel \rightarrow double helix structure "twisted ladder"

 \rightarrow 5' end has the phosphate (5'phosphate), the 3' end has a hydroxyl group OH (3'hydrohyl)

 \rightarrow chromosome (in the nucleotide; keeps DNA compact & organised) \rightarrow thread-like structure made up of tightly coiled DNA & proteins

 $\rightarrow \rightarrow \rightarrow$ Griffith's experiment (mouse) \rightarrow 1) DNA can withstand heat; 2) DNA lives on for a while after the living cells are dead; 3) bacteria can transfer DNA; 4) DNA carries the instructions for cell-making $\rightarrow \rightarrow \rightarrow Chargaff's$ experiment (complementary base pairs) \rightarrow amount of A[Adenine] = amount of T[Thymine] & amount of C[Cytosine] = amount of G[Guanine] \rightarrow nitrogenous bases form complementary pairs \rightarrow A & T; C & G

 $\rightarrow \rightarrow \rightarrow Rosalind Franklin's$ experiment (Photo 51) \rightarrow discovered the shape of DNA \rightarrow double helix

2. DNA Replication

 $\rightarrow \rightarrow \rightarrow$ **DNA replication** \rightarrow the process of copying a DNA molecule in order to produce 2 identical **DNA** molecules

 \rightarrow the DNA is replicated before the cell divides, so both daughter cells would have a copy of the DNA