3 Brown: Blond 1

 \rightarrow testcross \rightarrow the crossing of unknown genotype with a homozygous recessive one individual (bb) in order to see whether the unknown genotype is Bb or BB

3. Non-Mendelian Genetics

- → incomplete dominance → neither allele is dominant, and thus they "blend" together; when a heterozygous genotype results in an intermediate phenotype that is somewhere in-between the parents' phenotypes
- \rightarrow codominance \rightarrow both alleles are dominant and present; when a heterozygous genotype results in a phenotype where both of the parents' phenotypes are expressed
- \rightarrow karyotype \rightarrow visualization of a person's chromosomes
- \rightarrow \rightarrow Types of Chromosomes:
- \rightarrow sex-chromosome \rightarrow chromosome involved in determining biological gender, X & Y
- \rightarrow *autosome* \rightarrow all other chromosomes that are not sex chromosomes
- \rightarrow \rightarrow Types of Genetic Diseases:
- \rightarrow autosomal \rightarrow caused by genes located on autosomes
- \rightarrow sex-linked \rightarrow caused by genes located on sex-chromosomes
- \rightarrow dominant \rightarrow caused by a dominant allele (you only need 1 disease allele to be sick)
- \rightarrow recessive \rightarrow caused by a recessive allele (you need 2 disease alleles to be sick)
- \rightarrow Polygenic inheritance \rightarrow the additive effects of many genes on a single phenotype
- $\rightarrow \rightarrow \rightarrow$ Eye Color Alleles
- \rightarrow Brown \rightarrow always dominant [A] \rightarrow AA, AB, AC
- \rightarrow Blue [B] \rightarrow BB, BC
- \rightarrow Green \rightarrow always recessive [C] \rightarrow CC
- \rightarrow \rightarrow \rightarrow Blood Type Alleles
- $\rightarrow I^A \rightarrow \lceil A \rceil$
- $\rightarrow I^B \rightarrow \lceil B \rceil$
- \rightarrow i \rightarrow [O]
- Preview from Notesale.co.uk

 Preview from Notesale.co.uk

 preview page 3 of 5

 preview page 3 of 5

 preview page 3 of 5

 preview page 3 of 5
- \rightarrow I^A & I^B are co-dominant to each other and dominant over i [O]
- $\rightarrow \rightarrow \rightarrow$ Sex-Linked Diseases $\rightarrow X \& Y$

female ($H \rightarrow dominant$, healthy; $h \rightarrow recessive$, diseased)

- $\rightarrow X^H X^H \rightarrow healthy$
- $\rightarrow X^h X^h \rightarrow diseased$
- $\rightarrow X^H X^h \rightarrow carrier$
- → in women, a recessive allele on one X chromosome can be masked by a dominant allele on the other
- → women are *frequently carriers* of X-linked traits but more rarely have them expressed in their own phenotypes (hemophilia)

male

- $\rightarrow X^H Y \rightarrow healthy$
- \rightarrow X^hY \rightarrow diseased
- → males will *always* express the single allele they inherit
- \rightarrow **incomplete dominance** \rightarrow **blending** \rightarrow neither allele is dominant, and thus they "blend" together (all capital letters)
- $\rightarrow \rightarrow \rightarrow$ heterozygous genotype results in an intermediate phenotype that is somewhere in-between the parents' phenotypes P generation (red + white) \rightarrow F₁(pink \rightarrow C^RC^W / RW)