lons:

When a chemical reaction take place, only the valence electrons are involved, while the number of protons and neutrons in an atom unchanged.

Types of ions: Cation and Anion

Cation: Ions with positively charged. The number of protons is more than number of electrons.

Cation is formed by losing electrons and become a positive ion.

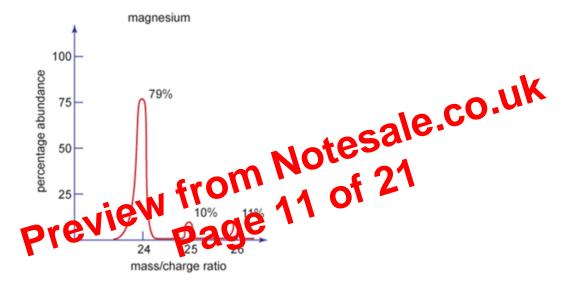
Usually only metal elements can form cation.

Mg²⁺ Al³⁺ lon Na⁺ Number of protons 12 11 Notesale.60. 13 Number of electrons 10 Anions: lons with negative than a so the number of electrons is more than the number of protons. protons. Arison is formed by receiving nd become a negative ion. Usually only non-metal elements can form anion.

Eg:

lon	N ³⁻	O ²⁻	F-
Number of protons	7	8	9
Number of electrons	10	10	10

Isoelectronic species: Species with the same number of electrons. For example, all the ions from the table above.


Eg:

- Mass Spectrum of Monoatomic Element

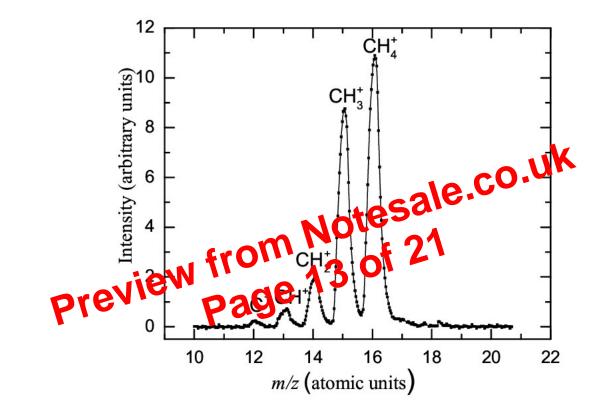
Use to determine:

- The number of isotopes of the element
- The relative isotopic mass of each isotope
- The percentage abundance of each isotope

Use magnesium as an example,

The relative atomic mass of magnesium

 $=\frac{(24X79)+(25X10)+(26X11)}{100} = 24.3$


Sometimes the relative abundance of isotopes are given instead of percentage abundance. However, the method of calculation is still the same.

LJΗ

- Mass spectrum of a compound

For example,

The mass spectrum of methane, CH₄ with a relative molecular mass of 16.

When C—H bonds are broken, fragment ions are formed.

Extra notes:

Determination of the number of carbon atoms in a molecule

Formula:

Relative abundance of $(M+1)^+$ ion=1.1nRelative abundance of M^+ ion100