$$= 40.5 + 9.41 = 49.91.$$

$$Q_3 = 120.5 + \frac{\frac{3 \times 2010}{4} - 1246}{334} \times 40$$

= 120.5 + 31.32 = 151.82.

Therefore,

Quartile Deviation
$$= \frac{1}{2}(Q_3 - Q_1)$$

$$=\frac{151.82-49.91}{2}=50.96(acre)$$

Question: (Do yourself)

Calculate quartile deviation for the following data:

Weights	40-45	45-50	50-55	55-60	60-65	65-70
(kg):						.k
No. of	10	22	28	20	<u>d</u> 0.	8
men:				-c21		

	men.				CA
Ans)	Quartile D	eviation = 5		Not	f 18
Que Calcu	stion: (Po llate quartil	e deviation	pag for the follo	e D owing data	

Class	10-15	15-20	20-25	25-30	30-40	40-50	50-60	60-70
interval:								
Frequency:	4	12	16	22	10	8	6	4

Ans) Quartile Deviation = 8.05.

Absolute Mean Deviation (or Mean Deviation):

a) Case of Simple Samples: Let $x_1, x_2, x_3, ..., x_n$ be a set of n simple sample values and let A be any other value, not being necessarily equal to any of the observed values. Then $|x_1 - A|$,

 $|x_2 - A|, \dots, |x_n - A|$ are respectively known as the deviations of $x_1, x_2, x_3, \dots, x_n$ about A and the Absolute Mean Deviation about A or generally known as Mean Deviation about A is defined as,

Mean Deviation about
$$A = \frac{\sum_{i=1}^{n} |x_i - A|}{n}$$
, $i = 1, 2, 3, \dots, n$

From the table, mean $(\bar{x}) = \frac{\sum xf}{\sum f} = \frac{112}{27} = 4.15$ Also, mode = variate value with maximum frequency = 4 Thus, the Mean Deviation from the mean = $\frac{\sum |x-4.15| \times f}{\sum f} = \frac{32.75}{27} = 1.21$

and the Mean Deviation from the mode =
$$\frac{\sum |x-4| \times f}{\sum f} = \frac{32}{27} = 1.19$$

Question:

Calculate the mean deviation about mean of the following distribution:

Class:	0-10	10-20	20-30	30-40	40-50
Frequency:	5	8	15	16	6

Ans) To find the mean, we construct the following table:

$$\bar{y} = \frac{\sum yf}{\sum f} = \frac{10}{50} = 0.20$$

Therefore, $\bar{x} = c + d$. $\bar{y} = 25 + 10 \times 0.20 = 27$

The Mean Deviation from the mean
$$= \frac{\sum |x - \bar{x}| \times f}{\sum f}$$

$$=\frac{472}{50}=9.44$$

Question:

Calculate the mean deviation about median of the following distribution:

Culculate the	- mean devi	ution ubou	i inculari or	the following	ing distribut
Class:	0-10	10-20	20-30	30-40	40-50
Frequency:	5	7	4	3	2

Question: (Do yourself)

Find mean and standard deviation of the following data.

Class	0-9	10-19	20-29	30-39	40-49	50-59
interval:						
Frequency:	15	20	25	24	12	34

Ans) Mean = $\bar{x} = 32.19$

Standard Deviation $S_x = 1.71$

Question: (Do yourself)

Find the standard deviation of the following data.

Class	120-124	125-129	130-134	135-139	140-144	145-149
interval:						
Frequency:	12	25	28	15	12	8

Ans) Standard Deviation = 7.18

Preview from Notesale.co.uk Page 18 of 18