
 One other pointer conversion is allowed: You can convert an integer into a pointer or a

pointer into an integer. However, you must use an explicit cast, and the result of such a

conversion is implementation defined and may result in undefined behavior. (A cast is not needed

when converting zero, which is the null pointer.)
o int *NumRecPrinted = NULL;
o int no_of_records = 10;

o NumRecPrinted = (int*)no_of_records;

8.5.3 Pointer Arithmetic

 There are only two arithmetic operations that you can use on pointers: addition and subtraction.

 let p1 be an integer pointer with a current value of 2000. Also, assume ints are 4 bytes long. After

the expression
p1++;

p1 contains 2004, not 2001.

The reason for this is that each time p1 is incremented, it will point to the next integer.

 The same is true of decrements. For example, assuming that p1 has the value 2000, the expression
p1--;

causes p1 to have the value 1996.

 All pointers will increase or decrease by the length of the data type they point to. This approach

ensures that a pointer is always pointing to an appropriate element of its base type.

 You are not limited to the increment and decrement operators. For example, you may add or

subtract integers to or from pointers. The expression
p1 = p1 + 12;

makes p1 point to the 12th element of p1's type beyond the one it currently points to.

 Besides addition and subtraction of a pointer and an integer, only one other arithmetic operation is

allowed: You can subtract one pointer from another in order to find the number of objects of their

base type that separate the two.
i = &arr[1] ;
j = &arr[5] ;
printf ("%d", j - i,) ; // will print 4 not 16

 All other arithmetic operations are prohibited.

 Specifically, you cannot multiply or divide pointers; you cannot add two pointers; you cannot

apply the bitwise operators to them; and you cannot add or subtract type float or double to or

from pointers.

Preview from Notesale.co.uk

Page 4 of 21

register int t;

for(t=0; s[t]; ++t)

putchar(s[t]);

}

/* Access s as a pointer. */

void putstr(char *s)

{

while(*s)

putchar(*s++);

}

8.7 Pointers and 2D Arrays
/* Demo: 2-D array is an array of arrays */
void main()
{

int s[4][2] = {
{ 1234, 56 },
{ 1212, 33 },
{ 1434, 80 },
{ 1312, 78 }

} ;
int i ;
for (i = 0 ; i <= 3 ; i++)

printf ("\nAddress of %d th 1-D array = %u", i, s[i]) ;
}

OUTPUT
Address of 0 th 1-D array = 65508
Address of 1 th 1-D array = 65516
Address of 2 th 1-D array = 65524
Address of 3 th 1-D array = 65532

The compiler knows that s is an array containing 4 one-dimensional arrays, each containing 2 integers. Thus,

the expressions s[0] and s[1] would yield the addresses of the zeroth and first one-dimensional array

respectively.

Suppose we want to refer to the element s[2][1] using pointers. We know that s[2] would give the address

65524. Obviously (65524 + 1) Or (s[2] + 1) would give the address 65528. And the value at this address

can be obtained by using the value at address operator, saying *(s[2] + 1).

We have already studied while learning one-dimensional arrays that num[i] is same as *(num + i).

Similarly, *(s[2] + 1) is same as, *(*(s + 2) + 1). Thus, all the following expressions refer to the same

element,
s[2][1]
* (s[2] + 1)
* (* (s + 2) + 1)

Using these concepts the following program prints out each element of a two-dimensional array using pointer

notation.
/* Pointer notation to access 2-D array elements */
main()

Preview from Notesale.co.uk

Page 6 of 21

i.e. 4001. This address is then assigned to p, an int pointer, and then using this pointer all elements of the

zeroth 1- D array are accessed. Next time through the loop when i takes a value 1, the expression q + i fetches

the address of the first 1-D array. This is because, q is a pointer to zeroth 1-D array and adding 1 to it would

give us the address of the next 1-D array. This address is once again assigned to p, and using it all elements of

the next 1-D array are accessed.

In the third function print(), the declaration of q looks like this:

int q[][4] ;
This is same as int (*q)[4], where q is pointer to an array of 4 integers. The only advantage is that we can

now use the more familiar expression q[i][j] to access array elements. We could have used the same

expression in show() as well

8.8 Arrays of Pointers
 The declaration for an int pointer array of size 10 is

int *x[10];

 To assign the address of an integer variable called var to the third element of the pointer array,

write
x[2] = &var;

To find the value of var, write
*x[2]

 If you want to pass an array of pointers into a function, you can use the same method that you use

to pass other arrays: Simply call the function with the array name without any subscripts. For

example, a function that can receive array x looks like this:
void display_array(int *q[])

{

int t;

for(t=0; t<10; t++)

printf(''%d ", *q[t]);

}

 Remember, q is not a pointer to integers, but rather a pointer to an array of pointers to integers.

Therefore you need to declare the parameter q as an array of integer pointers, as just shown. You

cannot declare q simply as an integer pointer because that is not what it is. Pointer arrays are often

used to hold pointers to strings. For example, you can create a function that outputs an error

message given its index, as shown here:
void syntax_error(int num)

{

static char *err[] = {

"Cannot Open File\n",

''Read Error\n",

"Write Error\n",

"Media Failure\n"

};

printf("%s", err[num]);

}

Preview from Notesale.co.uk

Page 9 of 21

