One other pointer conversion is allowed: You can convert an integer into a pointer or a
pointer into an integer. However, you must use an explicit cast, and the result of such a
conversion is implementation defined and may result in undefined behavior. (A cast is not needed
when converting zero, which is the null pointer.)

o int *NumRecPrinted = NULL;
o intno_of records = 10;
o NumRecPrinted = (int*)no_of records;

8.5.3 Pointer Arithmetic

There are only two arithmetic operations that you can use on pointers: addition and subtraction.
let p1 be an integer pointer with a current value of 2000. Also, assume ints are 4 bytes long. After
the expression
pl++;
pl contains 2004, not 2001.
The reason for this is that each time p1l is incremented, it will point to the next integer.
The same is true of decrements. For example, assuming that p1 has the value 2000, the expression
pl--;
causes p1l to have the value 1996.

All pointers will increase or decrease by the length of the data type they point¢o, This approach
ensures that a pointer is always pointing to an appropriate element of |t36

You are not limited to the increment and decre rég&k@ For example, you may add or
subtract lntegers to or from pointers. The ‘E

makes pl poﬁtﬂoﬂh?thhﬁlv@Ml% baﬁd %&e it currently points to.

Besides g d an integer, only one other arithmetic operation is
all (can subtract o%%a from another in order to find the number of objects of their
base type that separate the t

i=&arr1];

j=&arr[5] ;

printf ("%d", j - i,) ; // will print4 not 16
All other arithmetic operations are prohibited.
Specifically, you cannot multiply or divide pointers; you cannot add two pointers; you cannot
apply the bitwise operators to them; and you cannot add or subtract type float or double to or
from pointers.

register int t;
for(t=0; s[t]; ++t)
putchar(s[t]) ;
}
/* Access s as a pointer. */
void putstr (char *s)
{
while (*s)
putchar (*s++) ;
}

8.7 Pointers and 2D Arrays

* Demo: 2-D array is an array of arrays */

void main()
{
int s[4][2] = {
{1234, 56},
{1212,33},
{1434, 80},

{1312,78)
i}n’t i u\k
for (i=0;i<=3;i++) \ec
printf ("\nAddress of %d th 1-D ﬁ E‘Vs_"e[%a-
}
OUTPUT -S(Om
50

Address of 0 th 1- W 6 O
Ad f%’& ¥ 6551 ge

Ad@xf -D array = 6552@ a-

AddPess of 3 th 1-D array = 65532

The compiler knows that s is an array containing 4 one-dimensional arrays, each containing 2 integers. Thus,
the expressions s[0] and s[1] would yield the addresses of the zeroth and first one-dimensional array
respectively.

Suppose we want to refer to the element s[2][1] using pointers. We know that s[2] would give the address
65524. Obviously (65524 + 1) Or (s[2] + 1) would give the address 65528. And the value at this address
can be obtained by using the value at address operator, saying *(s[2] +1).
We have already studied while learning one-dimensional arrays that num([i] is same as *(num + i).
Similarly, *(s[2] + 1) is same as, *(*(s+2) + 1). Thus, all the following expressions refer to the same
element,

s[2][1]

"(s[2]+1)

"("(s+2)+1)

Using these concepts the following program prints out each element of a two-dimensional array using pointer
notation.

I* Pointer notation to access 2-D array elements */

main()

i.e. 4001. This address is then assigned to p, an int pointer, and then using this pointer all elements of the
zeroth 1- D array are accessed. Next time through the loop when i takes a value 1, the expression g + i fetches
the address of the first 1-D array. This is because, g is a pointer to zeroth 1-D array and adding 1 to it would
give us the address of the next 1-D array. This address is once again assigned to p, and using it all elements of
the next 1-D array are accessed.

In the third function print(), the declaration of g looks like this:

intql[4l; o . .

This is same as int (*q)[4], where q is pointer to an array of 4 integers. The only advantage is that we can
now use the more familiar expression q[i][j] to access array elements. We could have used the same
expression in show() as well

8.8 Arrays of Pointers
e The declaration for an int pointer array of size 10 is
int *x[10];
e To assign the address of an integer variable called var to the third element of the pointer array,
write
x[2] = &var;
To find the value of var, write \)\4
*x[2] \ CO :

e If you want to pass an array of pointers m/ﬁﬁ %u can use the same method that you use
to pass other arrays: Simply call (}ZY name without any subscripts. For
hj

example, a function that ci§ y x Iook
(int *

Sl

for (t=0; t<10; t++)
printf(''sd ", *q[t]);
}

e Remember, q is not a pointer to integers, but rather a pointer to an array of pointers to integers.
Therefore you need to declare the parameter g as an array of integer pointers, as just shown. You
cannot declare g simply as an integer pointer because that is not what it is. Pointer arrays are often
used to hold pointers to strings. For example, you can create a function that outputs an error
message given its index, as shown here:
void syntax error (int num)

{
static char *err[] = {
"Cannot Open File\n",
''Read Error\n",
"Write Error\n",
"Media Failure\n"
};

printf ("%$s", err[num]);

