
 One other pointer conversion is allowed: You can convert an integer into a pointer or a

pointer into an integer. However, you must use an explicit cast, and the result of such a

conversion is implementation defined and may result in undefined behavior. (A cast is not needed

when converting zero, which is the null pointer.)
o int *NumRecPrinted = NULL;
o int no_of_records = 10;

o NumRecPrinted = (int*)no_of_records;

8.5.3 Pointer Arithmetic

 There are only two arithmetic operations that you can use on pointers: addition and subtraction.

 let p1 be an integer pointer with a current value of 2000. Also, assume ints are 4 bytes long. After

the expression
p1++;

p1 contains 2004, not 2001.

The reason for this is that each time p1 is incremented, it will point to the next integer.

 The same is true of decrements. For example, assuming that p1 has the value 2000, the expression
p1--;

causes p1 to have the value 1996.

 All pointers will increase or decrease by the length of the data type they point to. This approach

ensures that a pointer is always pointing to an appropriate element of its base type.

 You are not limited to the increment and decrement operators. For example, you may add or

subtract integers to or from pointers. The expression
p1 = p1 + 12;

makes p1 point to the 12th element of p1's type beyond the one it currently points to.

 Besides addition and subtraction of a pointer and an integer, only one other arithmetic operation is

allowed: You can subtract one pointer from another in order to find the number of objects of their

base type that separate the two.
i = &arr[1] ;
j = &arr[5] ;
printf ("%d", j - i,) ; // will print 4 not 16

 All other arithmetic operations are prohibited.

 Specifically, you cannot multiply or divide pointers; you cannot add two pointers; you cannot

apply the bitwise operators to them; and you cannot add or subtract type float or double to or

from pointers.

Preview from Notesale.co.uk

Page 4 of 21

register int t;

for(t=0; s[t]; ++t)

putchar(s[t]);

}

/* Access s as a pointer. */

void putstr(char *s)

{

while(*s)

putchar(*s++);

}

8.7 Pointers and 2D Arrays
/* Demo: 2-D array is an array of arrays */
void main()
{

int s[4][2] = {
{ 1234, 56 },
{ 1212, 33 },
{ 1434, 80 },
{ 1312, 78 }

} ;
int i ;
for (i = 0 ; i <= 3 ; i++)

printf ("\nAddress of %d th 1-D array = %u", i, s[i]) ;
}

OUTPUT
Address of 0 th 1-D array = 65508
Address of 1 th 1-D array = 65516
Address of 2 th 1-D array = 65524
Address of 3 th 1-D array = 65532

The compiler knows that s is an array containing 4 one-dimensional arrays, each containing 2 integers. Thus,

the expressions s[0] and s[1] would yield the addresses of the zeroth and first one-dimensional array

respectively.

Suppose we want to refer to the element s[2][1] using pointers. We know that s[2] would give the address

65524. Obviously (65524 + 1) Or (s[2] + 1) would give the address 65528. And the value at this address

can be obtained by using the value at address operator, saying *(s[2] + 1).

We have already studied while learning one-dimensional arrays that num[i] is same as *(num + i).

Similarly, *(s[2] + 1) is same as, *(*(s + 2) + 1). Thus, all the following expressions refer to the same

element,
s[2][1]
* (s[2] + 1)
* (* (s + 2) + 1)

Using these concepts the following program prints out each element of a two-dimensional array using pointer

notation.
/* Pointer notation to access 2-D array elements */
main()

Preview from Notesale.co.uk

Page 6 of 21

i.e. 4001. This address is then assigned to p, an int pointer, and then using this pointer all elements of the

zeroth 1- D array are accessed. Next time through the loop when i takes a value 1, the expression q + i fetches

the address of the first 1-D array. This is because, q is a pointer to zeroth 1-D array and adding 1 to it would

give us the address of the next 1-D array. This address is once again assigned to p, and using it all elements of

the next 1-D array are accessed.

In the third function print(), the declaration of q looks like this:

int q[][4] ;
This is same as int (*q)[4], where q is pointer to an array of 4 integers. The only advantage is that we can

now use the more familiar expression q[i][j] to access array elements. We could have used the same

expression in show() as well

8.8 Arrays of Pointers
 The declaration for an int pointer array of size 10 is

int *x[10];

 To assign the address of an integer variable called var to the third element of the pointer array,

write
x[2] = &var;

To find the value of var, write
*x[2]

 If you want to pass an array of pointers into a function, you can use the same method that you use

to pass other arrays: Simply call the function with the array name without any subscripts. For

example, a function that can receive array x looks like this:
void display_array(int *q[])

{

int t;

for(t=0; t<10; t++)

printf(''%d ", *q[t]);

}

 Remember, q is not a pointer to integers, but rather a pointer to an array of pointers to integers.

Therefore you need to declare the parameter q as an array of integer pointers, as just shown. You

cannot declare q simply as an integer pointer because that is not what it is. Pointer arrays are often

used to hold pointers to strings. For example, you can create a function that outputs an error

message given its index, as shown here:
void syntax_error(int num)

{

static char *err[] = {

"Cannot Open File\n",

''Read Error\n",

"Write Error\n",

"Media Failure\n"

};

printf("%s", err[num]);

}

Preview from Notesale.co.uk

Page 9 of 21

