1Y ToTe 1 YT Vo TR L= P PR SSRR 80

Cutting And Pasting (Killing And YanKing) TeXt........cccccuimimiiieeeeeiiiiinie e eeeeeeeiiinn e 80
THE MELA KBY...oi ittt 81
(@] 1 410] =1 1o o 1P 81
Programmable ComPIEtiON.........c...uuiiiiiiiee e e e e e e e e e e e eeaees 83
USING HISTOTY ..ottt e e e e e e e e e s bbb bt e e bbb eeeeaeaeas 83
SEArCHING HiSTOIY....iiii e e e e e e e e e e e e e as 84
(IS (0 YA T o T= 1][0 o P PP 86
£ 10 PR 86
ST U] '] 0T o 1 o PRSPPI 86
FUINEr REAAING.........viiiei it e e 87
9 — PEIMISSIONS.....cccssssummnnnmssisssssssssssnnnnssmsssssssssssnnnnssssssssssssssssnnnsssssssnsnnnnnnnnnns 88
Owners, Group Members, And Everybody EISe..........cccoviiiiiiiiiiiiiiiecceee e 89
Reading, Writing, ANd EXECULING........ccuuiiiiiiiiiee e s e ettt e e e e e e e s s ssnrbrreeeeesaaaeeeeeeeeees 90
chmod — Change File MOUE........cooiiiiiiii e 92
What The HECK IS OCLAI?........coiiiiiiieiiie e 93
Setting File Mode With The GUIL........oeiiiiiiii e
umask — Set Default PermiSSIONS.oouviiiiiiiiiiiieeiee e
Some Special PErMISSIONS.......iiiiiiiiiiiciiiee e e e e e
Changing IdeNtItIES.oceeiiie e e e .
su — Run A Shell With Substitute User And Group IDs.................... O "
sudo — Execute A Command As Another User..................! . G

e..‘..
Ub ANd SUO........coeeeiiiiiiiiii g G OAYN Y
chownuﬂtg:h:ngseuFi(I)e Owner And Gro“@"esa

chgrp — Change Group Ownership\...

.. 103
Exercising Our PrivilegesCa2 (. Y\ V.2 L. 4 ?)’(............................... 103
£ ot £

Changing Your Passpdrd AN . 0 ... 106
Summi gj}gé e ... 107
@r@@ NG Pa .. 107
10 — PrOCESSES..ceeeeuuussiirssssmnnnnmssssssssssssnnnnsssssssssssnnssnssssssssssnnssssssnssssssnnsssnsnnns 108
HOW A PrOCESS WOIKS....ciiiiiiiiiiie ittt et 108
VIBWING PrOCESSES.utiiiiiiiieee ettt ettt e e e e e e e e s s s bbb e e e e e abbba e aeeees 109
Viewing Processes Dynamically With tOp........cccvvveeiiiiiiiiiiiecceeee e 111
CONIOIING PrOCESSES. ...tetiieiitiiiie ettt et e e ettt e s et e e e s e e e e e e nennnenenees 113
INEEITUPLING A PrOCESS. ..cii i i ettt e e e e e e s e e e e e e e eeereean s 114
Putting A Process In The Background.............cccccoeeiiiiiiiiiiiiiieec e 114
Returning A Process To The FOoreground..............coovvveiieriiieeee i 115
StoppiNg (PAUSING) A PrOCESS.cuiiiiiee et ettt e erner e e e e e e e e e e ann e e e e e 116

S o =1 L3 PSSR 117
Sending Signals To Processes With Kill..............ccccvveeiiii e 117
Sending Signals To Multiple Processes With Killall..............ccoccoiiiiiiniiiiis 120

More Process Related COMMANAS........cccooiiiiiiiiiiiiii et 120

ST U] '] 0T o o P EPRR 121
Part 2 — Configuration And The Environment..........ccccrmrmmnsnrnnns 123
11 — The ENVIrONME@NL.........cccvevmsemmsemmmmmssssmsmmmmmmsmmsssmssmmmsmsssssmmssmsssmsmmsssssssssnes 124

iv

24 — WIiting YOUF Fil'ST SCEIPT.......eeueeeeecrmismienismssesienssmssnssenssnssesssnsensnssnsenss 354

What Are Shell SCHPIS?.. ..t e e e e e e s e e e e e e e e 354
HOW TO WIite A Shell SCHPL....coi i 354
S Yox] o0 T[S o] = | PR 355
EXecutable PermiSSIONS.oc.uiiiii ittt e e 356
SCHIPL FIle LOCATION. ...ttt e e e e e e e 356
GOO0d LOCALIONS FOI SCIPLS...uuuiiiiiiiie e iiiecieee e e e e e e e e e e e e 358
MOre FOIMAtting TrCKS. .. .ueviiiiiiiiiee ittt e et e et e e et e e e e s et e e e e snraeeaesennns 358
o] oo @] o] 1 0T I\ F= T 41T PR 358
Indentation And liN€-CONtINUALION.oiuuiiiiiiiiie e 358
Configuring vim For SCript WIItING.......cc.uvvieieiiieee e 359
51U] '] 0T o o S EPPR 360
FUMNEr REAGING. ittt e e 360
25 — Starting A PrOJECT.........ccovcessssmmmmnnssssssssssssssnnnnnsssssssssssssssssssssssssssssssssssss 361
First Stage: Minimal DOCUMENT..........cooiiiiiiiei et 361
Second Stage: Adding A Little Data............cueeereiieeeeiiiiiiiiiieieeee e e e ee e eeeeeeeaen 363
Variables AN CONSTANTS.ueiiiei ittt e et e e e e eeeeeeeees 364
Assigning Values To Variables And Constants............cccccvvveeiiriieeeeiiiieiie e 367
HEIE DOCUMENES. ...ttt e e ettt e e e e e e e e e e e s s e e e e e e e eeennrenns s /868
SUMMING Ui e e e e e s e e e e e s \) 71
Further REAING...........ooveiueecie et \e .. O‘ 371
.

26 — Top-Down DesignN.............ccevevssersengee. t.esa' 372
Shell FUNCLIONS.......ccvveeeeereeee e el NO ?)’(............................ 373

Local Variables............... (O L.\ 0O 1 ST 376
Keep Scripts Ruppinp ... AN A 20 ... 377

27 — Flow Control: Branching With if...........cccccevvvvvvrmvmmsssssssssssssssssssssssssnnes 381
] P PO TP PUUPPPRRRRRRRN 381
1R = L[[382
LT PP 384

Lo T 01 {2171 o] 1 P 384
SHING EXPrESSIONS. ...ttt ettt e e e e e s s bbbt e e e e e e e e e e e s s aebbbbbeeeeeeeees 387

L1 (=T o [T o T o] L= 1T o] g S 388

A More Modern Version Of tEST........oi it eeeeees 389
(()) - DeSIgNEA FOI INEOEIS.....ueiiiiieeeeeii ittt et e e e e e s s es e e e reeeeesssessssserreeeeeeeensnns 391
CoMDbINING EXPrESSIONS. ...ciiiiee ittt ittt ettt e e e e e e e s e et e e e e e e e e s e s st eereeaaaeasesanannnenes 392
Portability Is The Hobgoblin Of Little Minds............ccccceiiiiiiiieiiiic e 394
Control Operators: Another Way To Branch...........cccccoiviviiiie e 394
SUMMING UP. ettt e e e s ettt e e e e st b ae e e e eannee e e e s anbaeeaeaeeeens 395
T T g =T Vo [T T S 396

28 — Reading Keyboard INPUL..................eeuuueuueeussusnssssssssssssssssssssssssssssssssssss 397
read — Read Values From Standard INPUL...........cuveeeiirieeeiiiiiieeeee e 398

(@] 10] 1SS 400

YOU Can't PiPE FEAU........uuuiiiiiiiiieee e e e eieeeieie et e e e e e e e s e e e e e e e e s s s nnnaannn s 404
ValidAting INPUL. ..ottt ettt e e st e e e e s eabbe e e e e e e eeeeeees 404
LT T £ PP 406
51U] '] T o o U EPRR 407

T = O =T o [| PP 407

T LT g =T Vo [T T 408
29 — Flow Control: Looping With whil@ [UNtil............ccceeeeeeiirinnnnnniiinnnns 409
10T o1 Vo TS 409
1170111 T PR PPT 409

T o IO 10 A @ N o o] o F S 412

[0 0] TSP 413
Reading Files WIth LOOPS.uiiiiiiieiiiiiiiiiiieie ettt 414
YU 11T o L o PR 415
FUNEr REAMING. ... ittt e e e e eeeeeenee 415
30 — TroubleSNOOLING.......cccurrerssmsssssssssssssssssssmssssssmsssmsmsmssmmmmmmmsmmmsssssnssssssssnns 416
SYNEACHC EITOIS. .. eeiiiiee ettt e e et e e e e e e e e e e e e e eaeaeaas 416
MiISSING QUOLES....ceiiieeeiiiiiiiiiieeiee e e e e e e e e s ssieeeee e e e e e e s s e s snnnenneeeeeeeaeeesss s Rhegennnnnnnnns 417
Missing Or Unexpected TOKENS.........ccceeeiiiiiciiiiiiiiieiiee e u 417
Unanticipated EXPanSIONS.cccuuueiiiiiiiiiiiiiiiieeeeeeeeageesssaeees CO; 418
(o [Tor= 1N =1 1 (o] £ \e. 420
Defensive Programming...................... O = a- .. 420

Verifying Input...........ccccvvveeee. rﬂ :
Design Is A Funci mi ?) .. 422
Testing.......c...... -‘ ﬁ "6 .. 422
Te s@\] (: ?) ... 423
@#&E g .. 424
P (nding The@ .. 424
LT (o T YO et PR SUTUPTPTR 424

Examining Values DUring EXECULION........cc.uuuueiiiiiieeee ettt e e e e e eeeieennes 427

51U] '] 0T o o U PPRR 427
FUMNEr REAGING. ittt e e et as 428
31 - Flow Control: Branching With CaSe€............ccosssummmmmmssrsessssmmmssnennnnnnnns 429
(0r= 1o TP PTPTN 429
PAILEINS. .. 431
Performing MUItIPIe ACHONS........oiuuiiie et 433

IS0] 01 0T o 6 o PR 434
T T gl =T Vo [T T 434
32 — POSitional PArameters...........ocosssssssssssssssssssssssssssssssssssssnssssssssssssnnnssssns 436
Accessing The Command LiNE.........ccuuiiiiiiiiiiee st 436
Determining The Number of ArgumentS..........coocviiiiiiiiiii e 437

shift — Getting Access To Many ArgUMENTS.ccuuiiieeeeeiiiiiciirieieeeeeeeeeeseeseeeeeeeeaennns 438
SIMPIE APPHCALIONS. ...eeii it 439

Using Positional Parameters With Shell FUNCHONS.............ccccciiiiiiiiieceen 440
Handling Positional Parameters EN MasSe.........cccccuvviviiiiiiee e 441

Xi

Introduction

I want to tell you a story.

No, not the story of how, in 1991, Linus Torvalds wrote the first version of the Linux ker-
nel. You can read that story in lots of Linux books. Nor am I going to tell you the story of
how, some years earlier, Richard Stallman began the GNU Project to create a free Unix-
like operating system. That's an important story too, but most other Linux books have that
one, as well.

No, I want to tell you the story of how you can take back control of your computer.

When I began working with computers as a college student in the late 1970s, th \@ a
revolution going on. The invention of the microprocessor had made it ordi-
nary people like you and me to actually own a computer. It’ H\D people today
to imagine what the world was like when only bi 1g government ran all
the computers. Let's just say, you couldn’ Né

Today, the world is very di e ters are ev&h%%m tiny wristwatches to
giant data center @%& between /Td ubiquitous computers, we also
have ork conn gether. This has created a wondrous new
age of empowerm% tlve freedom, but over the last couple of decades
sornethlng else has been happening. A few giant corporations have been imposing their
control over most of the world's computers and deciding what you can and cannot do
with them. Fortunately, people from all over the world are doing something about it. They
are fighting to maintain control of their computers by writing their own software. They

are building Linux.

Many people speak of “freedom” with regard to Linux, but I don't think most people
know what this freedom really means. Freedom is the power to decide what your com-
puter does, and the only way to have this freedom is to know what your computer is do-
ing. Freedom is a computer that is without secrets, one where everything can be known if
you care enough to find out.

Why Use The Command Line?

Have you ever noticed in the movies when the “super hacker,”—you know, the guy who
can break into the ultra-secure military computer in under thirty seconds—sits down at
the computer, he never touches a mouse? It's because movie makers realize that we, as
human beings, instinctively know the only way to really get anything done on a computer

XVi

Your First Keystrokes

leges.

Assuming that things are good so far, let's try some typing. Enter some gibberish at the
prompt like so:

[me@linuxbox ~]$ kaekfjaeifj

Since this command makes no sense, the shell will tell us so and give us another chance:

bash: kaekfjaeifj: command not found
[me@linuxbox ~1$

Command History

If we press the up-arrow key, we will see that the previous com @ k\ekx‘(eifj” reap-
pears after the prompt. This is called command history, stributions remem-

ber the last 500 commands by default. Press {e \ key and the previous com-
mand disappears. m N ?)/(
Cursor I\/I-o f“ O ’l O"

?‘Xa VIOUS up arrow key again. Now try the left and right-ar-
keys. See howv sition the cursor anywhere on the command line? This

makes editing commands easy.

A Few Words About Mice And Focus

While the shell is all about the keyboard, you can also use a mouse with your ter-
minal emulator. There is a mechanism built into the X Window System (the un-
derlying engine that makes the GUI go) that supports a quick copy and paste tech-
nique. If you highlight some text by holding down the left mouse button and drag-
ging the mouse over it (or double clicking on a word), it is copied into a buffer
maintained by X. Pressing the middle mouse button will cause the text to be
pasted at the cursor location. Try it.

Note: Don't be tempted to use Ctrl-c and Ctrl-v to perform copy and paste
inside a terminal window. They don't work. These control codes have different
meanings to the shell and were assigned many years before Microsoft Windows.

2 — Navigation

2 — Navigation

The first thing we need to learn (besides just typing) is how to navigate the file system on
our Linux system. In this chapter we will introduce the following commands:

e pwd - Print name of current working directory
e cd - Change directory

e 1s - List directory contents

Understanding The File System Tree \ CO ’
Like Windows, a Unix-like operating_sygt:]aux organizes its files in what is

called a hierarchical directory stactu rnean \ﬂ?r are organized in a tree-like
pattern of directories mmalled fold %3 systems), which may contain
files and otheggré e first 6 he file system is called the root direc-
é ctory co gll subdlrectorles which contain more files and
@x tories and S(? &:g
ndo

Note that unlike Windows, which has a separate file system tree for each storage device,
Unix-like systems such as Linux always have a single file system tree, regardless of how
many drives or storage devices are attached to the computer. Storage devices are attached
(or more correctly, mounted) at various points on the tree according to the whims of the
system administrator, the person (or persons) responsible for the maintenance of the sys-
tem.

The Current Working Directory

Most of us are probably familiar with a graphical file manager which represents the file
system tree as in Figure 1. Notice that the tree is usually shown upended, that is, with the
root at the top and the various branches descending below.

However, the command line has no pictures, so to navigate the file system tree we need
to think of it in a different way.

Wildcards

Data??? Any file beginning with “Data” followed
by exactly three characters

[abc]™ Any file beginning with either an “a”, a
‘(b” OI' a “C”

BACKUP.[0-9][0-9][0-9] Any file beginning with “BACKUP.”
followed by exactly three numerals

[[:upper:]]* Any file beginning with an uppercase letter

[!'[:digit:]]* Any file not beginning with a numeral

*[[:lower:]123] Any file ending with a lowercase letter or

the numerals “1”, “2”, or “3”

Wildcards can be used with any command that accepts filenames as arguments, but we’ll
talk more about that in Chapter 7.

\S-

Character Ranges “_esa
If you are coming.fr ﬂ\e ﬁlx like 5 znt or have been reading
some other b %‘ lbs bject, ygu fav ncountered the [A-Z] or the
g r range n ese are traditional Unix notations and
P in older 1&9 ux as well. They can still work, but you have to be
very careful w1tl@ ause they will not produce the expected results unless
properly configured. For now, you should avoid using them and use character

classes instead.

Wildcards Work In The GUI Too

Wildcards are especially valuable not only because they are used so frequently on

the command line, but are also supported by some graphical file managers.

e In Nautilus (the file manager for GNOME), you can select files using the
Edit/Select Pattern menu item. Just enter a file selection pattern with wild-
cards and the files in the currently viewed directory will be highlighted for se-
lection.

e In some versions of Dolphin and Konqueror (the file managers for KDE),
you can enter wildcards directly on the location bar. For example, if you want
to see all the files starting with a lowercase “u” in the /usr/bin directory, enter
“/usr/bin/u*” in the location bar and it will dlsplay the result.

27

Creating Your Own Commands With alias

Great! “foo” is not taken. So let's create our alias:

[me@linuxbox ~]$ alias foo='cd /usr; 1s; cd -'

Notice the structure of this command:

alias name='string'

After the command “alias” we give alias a name followed immediately (no whitespace al-
lowed) by an equals sign, followed immediately by a quoted string containing the mean-
ing to be assigned to the name. After we define our alias, it can be used anywhere the
shell would expect a command. Let's try it:

[me@linuxbox ~]$ foo

bin games kerberos 1ib64 local sha \ep‘c
etc include 1lib libexec sbin %{ﬁ
/home/me Nol"’e

o.uK

[me@linuxbox ~]$

YR
We can al BNype command %to@e our alias:
e\ ag@qg

[me@linuxbox ~]$ type foo
foo is aliased to "cd /usr; 1ls ; cd -'

To remove an alias, the unalias command is used, like so:

[me@linuxbox ~]$ unalias foo
[me@linuxbox ~]$ type foo
bash: type: foo: not found

While we purposefully avoided naming our alias with an existing command name, it is
not uncommon to do so. This is often done to apply a commonly desired option to each
invocation of a common command. For instance, we saw earlier how the 1S command is

often aliased to add color support:

51

6 — Redirection

standard error we must refer to its file descriptor. A program can produce output on any
of several numbered file streams. While we have referred to the first three of these file
streams as standard input, output and error, the shell references them internally as file de-
scriptors 0, 1 and 2, respectively. The shell provides a notation for redirecting files using
the file descriptor number. Since standard error is the same as file descriptor number 2,
we can redirect standard error with this notation:

[me@linuxbox ~]$ 1s -1 /bin/usr 2> ls-error.txt

The file descriptor “2” is placed immediately before the redirection operator to perform
the redirection of standard error to the file 1s-error. txt.

Redirecting Standard Output And Standard Error To One File

There are cases in which we may wish to capture all of the output of a command %1 -
gle file. To do this, we must redirect both standard output and standard t
time. There are two ways to do this. First, the traditional way, é_\ w ith old ver-

sions of the shell:
NO"QS i
[me@linuxbox ~]$ 1s } &(@‘L 1s- Htpﬁ{xt‘:}g

‘A\

Usmg@s \l we perf ctions. Flrst we redirect standard output to the
file 1s~output.txt and Shen we Tedirect file descriptor 2 (standard error) to file de-

scriptor one (standard output) using the notation 2>&1.

Notice that the order of the redirections is significant. The redirection of stan-
dard error must always occur dafter redirecting standard output or it doesn't work. In
the example above,

>1s-output.txt 2>&1
redirects standard error to the file 1s-output. txt, but if the order is changed to
2>&1 >1s-output.txt

standard error is directed to the screen.

Recent versions of bash provide a second, more streamlined method for performing this

56

6 — Redirection

cat [file...]

In most cases, you can think of cat as being analogous to the TYPE command in DOS.
You can use it to display files without paging, for example:

[me@linuxbox ~]$ cat ls-output.txt

will display the contents of the file 1s-output. txt. cat is often used to display short
text files. Since cat can accept more than one file as an argument, it can also be used to
join files together. Say we have downloaded a large file that has been split into multiple
parts (multimedia files are often split this way on Usenet), and we want to join them back
together. If the files were named:

movie.mpeg.001 movie.mpeg.002 ... movie.mpeg.099 \4

we could join them back together with this command:

cat movie.mpeg.0* > movie.mpeg

Since wildcards alwa anlx Qed or (z a@&ems will be arranged in the cor-
rect order. \, \ e

This i &e@ and good, b this have to do with standard input? Nothing yet,
but let's try something else. What happens if we enter “cat” with no arguments:

[me@linuxbox ~]$ cat

Nothing happens, it just sits there like it's hung. It may seem that way, but it's really doing
exactly what it's supposed to.

If cat is not given any arguments, it reads from standard input and since standard input
is, by default, attached to the keyboard, it's waiting for us to type something! Try adding
the following text and pressing Enter:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.

Next, type a Ctrl-d (i.e., hold down the Ctrl key and press “d”) to tell cat that it has

58

6 — Redirection

utilized by a shell feature called pipelines. Using the pipe operator “|” (vertical bar), the
standard output of one command can be piped into the standard input of another:

commandl | command2

To fully demonstrate this, we are going to need some commands. Remember how we said
there was one we already knew that accepts standard input? It's 1ess. We can use less
to display, page-by-page, the output of any command that sends its results to standard
output:

[me@linuxbox ~]$ 1s -1 /usr/bin | less

This is extremely handy! Using this technique, we can conveniently examine the ut
of any command that produces standard output. (\&
The Difference Between > and ‘.es
At first glance, it may bﬂ'qmerstand th %\’(Jerformed by the
pipeline operater w redirecti Slmply put, the redirection
raﬁq’ command e e the pipeline operator connects the
ét% e command of a second command.

commandl > filel
commandl | command2

A lot of people will try the following when they are learning about pipelines, “just
to see what happens.”

command1l > command?2
Answer: Sometimes something really bad.

Here is an actual example submitted by a reader who was administering a Linux-
based server appliance. As the superuser, he did this:

cd /usr/bin
1s > less

60

7 — Seeing The World As The Shell Sees It

7 — Seeing The World As The Shell Sees It

In this chapter we are going to look at some of the “magic” that occurs on the command
line when you press the enter key. While we will examine several interesting and com-
plex features of the shell, we will do it with just one new command:

e echo —Display a line of text

Expansion

Each time you type a command line and press the enter key, a@@fo&'}s several pro-

cesses upon the text before it carries out your comg dve seen a couple of cases

of how a simple character sequence 0 can have a lot of meaning to the

shell. The process that makes thi a ed . With expansion, you enter

something and it is ex S methmg ﬁﬁb e shell acts upon it. To demon-
the echo command. echo is a shell

strate what=w, his, let's tg:x_
g% ebq, rms a ver g@ t prints out its text arguments on standard out-
t

[me@linuxbox ~]$ echo this is a test
this is a test

That's pretty straightforward. Any argument passed to echo gets displayed. Let's try an-
other example:

[me@linuxbox ~]$ echo *
Desktop Documents ls-output.txt Music Pictures Public Templates
Videos

So what just happened? Why didn't echo print “*”? As you recall from our work with
wildcards, the “*” character means match any characters in a filename, but what we didn't
see in our original discussion was how the shell does that. The simple answer is that the
shell expands the “*” into something else (in this instance, the names of the files in the

67

Expansion

[me@linuxbox ~]$ echo $(((5**2) * 3))
75

Here is an example using the division and remainder operators. Notice the effect of inte-
ger division:

[me@linuxbox ~]$ echo Five divided by two equals $((5/2))
Five divided by two equals 2

[me@linuxbox ~]$ echo with $((5%2)) left over.

with 1 left over.

Arithmetic expansion is covered in greater detail in Chapter 34.

Brace Expansion

Perhaps the strangest expansion is called brace expansion. With@' @‘&Aﬁate multi-

ple text strings from a pattern containing braces. Here'

; q;@s
[me@linuxbox ~]$ echo @ ¢ ;‘* 6?)

Front-A-Back Fr n-‘— ront
\ o\ r°

? 1%\’ be brac? @ y contam a leading portion called a preamble and a
ra a posts

iling portion call cript. The brace expression itself may contain either a
comma-separated list of strings, or a range of integers or single characters. The pattern
may not contain embedded whitespace. Here is an example using a range of integers:

[me@linuxbox ~]$ echo Number_{1..5}
Number_1 Number_2 Number_3 Number_4 Number_5

Integers may also be zero-padded like so:

[me@linuxbox ~]$ echo {01..15}

01 02 03 04 05 06 07 68 609 10 11 12 13 14 15

[me@linuxbox ~]$ echo {6061..15}

001 002 003 004 005 006 007 008 009 010 011 012 013 014 015

A range of letters in reverse order:

71

Command Line Editing

Table 8-3: Cut And Paste Commands

Key Action

Ctrl-k Kill text from the cursor location to the end of line.

Ctrl-u Kill text from the cursor location to the beginning of the line.

Alt-d Kill text from the cursor location to the end of the current word.

Alt- Kill text from the cursor location to the beginning of the current

Backspace word. If the cursor is at the beginning of a word, kill the previous
word.

Ctrl-y Yank text from the kill-ring and insert it at the cursor location.

The Meta Key u\(

If you venture into the Readline documentation “g &LQ found in the
READLINE section of the bash man p aﬁé counter the term “meta
key.” On modern keyboards this nw ﬁ key wasn't always so.
Back in the dim tirpes but after %} erybody had their own
Computer What %r @t have d% called a terminal. A terminal
was ation dev1ce ed a text display screen and a keyboard
Pg noug eﬁgen to display text characters and move the cursor
round It was ﬁ sually by serial cable) to a larger computer or the com-
munication network of a larger computer. There were many different brands of
terminals and they all had different keyboards and display feature sets. Since they
all tended to at least understand ASCII, software developers wanting portable ap-
plications wrote to the lowest common denominator. Unix systems have a very
elaborate way of dealing with terminals and their different display features. Since
the developers of Readline could not be sure of the presence of a dedicated extra
control key, they invented one and called it “meta.” While the A1t key serves as
the meta key on modern keyboards, you can also press and release the ESC key to

get the same effect as holding down the Alt key if you're still using a terminal
(which you can still do in Linux!).

Completion

Another way that the shell can help you is through a mechanism called completion. Com-
pletion occurs when you press the tab key while typing a command. Let's see how this
works. Given a home directory that looks like this:

81

Completion

completion will also work on variables (if the beginning of the word is a “$”), user names
(if the word begins with “~”), commands (if the word is the first word on the line.) and
hostnames (if the beginning of the word is “@?”). Hostname completion only works for
hostnames listed in /etc/hosts.

There are a number of control and meta key sequences that are associated with comple-
tion:
Table 8-4: Completion Commands

Key Action

Alt-? Display list of possible completions. On most systems you can also
do this by pressing the tab key a second time, which is much easier.

Alt-* Insert all possible completions. This is useful when you want to use
more than one possible match.

There quite a few more that I find rather obscure. You iln seec@ in bash man

page under “READLINE”. Sa
Program \ﬁl&@ﬂmuﬁl 63
s of bash y called programmable completion. Pro-

P rnable co s you (or more likely, your distribution provider) to
add additional etion rules. Usually this is done to add support for specific

applications. For example it is possible to add completions for the option list of a
command or match particular file types that an application supports. Ubuntu has a
fairly large set defined by default. Programmable completion is implemented by
shell functions, a kind of mini shell script that we will cover in later chapters. If

you are curious, try:
set | less

and see if you can find them. Not all distributions include them by default.

Using History

As we discovered in Chapter 1, bash maintains a history of commands that have been
entered. This list of commands is kept in your home directory in a file called
.bash_history. The history facility is a useful resource for reducing the amount of
typing you have to do, especially when combined with command line editing.

83

Reading, Writing, And Executing

If no character is specified, “all” will be assumed. The operation may be a “+” indicating
that a permission is to be added, a “-” indicating that a permission is to be taken away, or
a “=” indicating that only the specified permissions are to be applied and that all others
are to be removed.

(() & »

Permissions are specified with the w”, and “x” characters. Here are some examples
of symbolic notation:

Table 9-6: chmod Symbolic Notation Examples

Notation Meaning

u+x Add execute permission for the owner.

u-Xx Remove execute permission from the owner.

+X Add execute permission for the owner, group, and world.
Equivalent to a+X.

o-rw Remove the read and write permission from anyone btsﬁgthe

owner and group owner.

go=rw Set the group owner and aﬁa akﬁe owner to have read and

write perrmssmn & po or world previously had
execute @ ey are @7
te p

u+x, gos rx wner and set the permissions for
;gg
b

preVt® egr@ﬁ

Some people prefer to use octal notation, some folks really like the symbolic. Symbolic
notation does offer the advantage of allowing you to set a single attribute without disturb-
ing any of the others.

ead and execute. Multiple specifications
y commas.

Take a look at the chmod man page for more details and a list of options. A word of cau-
tion regarding the “--recursive” option: it acts on both files and directories, so it's not as
useful as one would hope since, we rarely want files and directories to have the same per-
missions.

Setting File Mode With The GUI

Now that we have seen how the permissions on files and directories are set, we can better
understand the permission dialogs in the GUIL In both Nautilus (GNOME) and Kon-
queror (KDE), right-clicking a file or directory icon will expose a properties dialog. Here
is an example from KDE 3.5:

95

Reading, Writing, And Executing

with the value 0002 (the value 022 is another common default value), which is the oc-
tal representation of our mask. We next create a new instance of the file foo.txt and
observe its permissions.

We can see that both the owner and group get read and write permission, while everyone
else only gets read permission. The reason that world does not have write permission is
because of the value of the mask. Let's repeat our example, this time setting the mask our-
selves:

[me@linuxbox ~]$ rm foo.txt

[me@linuxbox ~]$ umask 0000

[me@linuxbox ~]$ > foo.txt

[me@linuxbox ~]$ 1s -1 foo.txt

-rw-rw-rw- 1 me me 0 2008-03-06 14:58 foo.txt

When we set the mask to 0000 (effectively turning it off), we see that the file is now

world writable. To understand how this works, we have to look zﬁ@ again. If
we take the mask and expand it into binary, and then ¢ r\;@e e attributes we can
see what happens: x pSé.

f\

Original file Me?% P v fm\l-" rw-
MaskEY OVY Y|4 qoy\oee oo o160

[> ReSult —" CC- rW- FW- r--
preV) ﬂi%lp'a ‘

Ignore for the moment the leading zeros (we'll get to those in a minute) and observe that
where the 1 appears in our mask, an attribute was removed—in this case, the world write
permission. That's what the mask does. Everywhere a 1 appears in the binary value of the
mask, an attribute is unset. If we look at a mask value of @022, we can see what it does:

\\J

Original file mode --- rW- rw- rw-
Mask 000 000 010 010
Result --- rW- r-- r--

Again, where a 1 appears in the binary value, the corresponding attribute is unset. Play
with some values (try some sevens) to get used to how this works. When you're done, re-
member to clean up:

97

9 — Permissions

changed to the user's home directory. This is usually what we want. If the user is not
specified, the superuser is assumed. Notice that (strangely) the “-1” may be abbreviated
“-» which is how it is most often used. To start a shell for the superuser, we would do
this:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]#

After entering the command, we are prompted for the superuser's password. If it is suc-
cessfully entered, a new shell prompt appears indicating that this shell has superuser priv-
ileges (the trailing “#” rather than a “$”) and the current working directory is now the
home directory for the superuser (normally /root.) Once in the new shell, we can carry
out commands as the superuser. When finished, enter “exit” to return to the previous

shell:
rootalinusbor J# exit . O‘esa’},"
9 e iR
It is also possible to execyt aﬁlﬁﬂo mangzaﬁr @&ta #1g a new interactive com-

mand béu%lré ﬁ* ’L

) |
Cc

pad©

su -c 'command'

Using this form, a single command line is passed to the new shell for execution. It is im-
portant to enclose the command in quotes, as we do not want expansion to occur in our
shell, but rather in the new shell:

[me@linuxbox ~]% su -c 'ls -1 /root/*'
Password:
-rw------- 1 root root 754 2007-08-11 03:19 /root/anaconda-ks.cfg

/root/Mail:
total ©
[me@linuxbox ~]$%$

100

Changing Identities

radmins Changes the group owner to the group admins. The file owner is
unchanged.
bob: Change the file owner from the current owner to user bob and

changes the group owner to the login group of user bob.

Let's say that we have two users; janet, who has access to superuser privileges and
tony, who does not. User janet wants to copy a file from her home directory to the
home directory of user tony. Since user janet wants tony to be able to edit the file,
janet changes the ownership of the copied file from janet to tony:

[janet@linuxbox ~]$ sudo cp myfile.txt ~tony
Password:

[janet@linuxbox ~]% sudo 1s -1 ~tony/myfile.txt

-rw-r--r-- 1 root root 8031 2008-03-20 14:30 /home/tony/ \Fi}e txt
[janet@linuxbox ~]$ sudo chown tony: ~tony/myf11e.txt \JR
[janet@linuxbox ~]$ sudo 1ls -1 ~tony/myfile.t

-rw-r--r-- 1 tony tony 8031 2008- 03 2:321' ho /tony/myflle txt

\.‘o =
Here we see user janet c W om her e@ 7the home directory of user
tony. Next, J % he ow; ﬁ e from root (a result of using
sudo N ng the traj gkr the flrst argument, janet also changed the
@ [é ership % he”login group of tony, which happens to be group
tony.

Notice that after the first use of sudo, janet was not prompted for her password? This
is because sudo, in most configurations, “trusts” you for several minutes until its timer
runs out.

chgrp — Change Group Ownership

In older versions of Unix, the chown command only changed file ownership, not group
ownership. For that purpose, a separate command, chgrp was used. It works much the
same way as chown, except for being more limited.

Exercising Our Privileges

Now that we have learned how this permissions thing works, it's time to show it off. We
are going to demonstrate the solution to a common problem—setting up a shared direc-
tory. Let's imagine that we have two users named “bill” and “karen.” They both have mu-
sic CD collections and wish to set up a shared directory, where they will each store their

103

Exercising Our Privileges

[bill@linuxbox ~]%$ sudo chown :music /usr/local/share/Music
[bill@linuxbox ~]$ sudo chmod 775 /usr/local/share/Music
[bill@linuxbox ~]$ 1ls -1d /usr/local/share/Music

drwxrwxr-x 2 root music 4096 2008-03-21 18:05 /usr/local/share/Music

So what does this all mean? It means that we now have a directory,
/usr/local/share/Music that is owned by root and allows read and write ac-
cess to group music. Group music has members bill and karen, thus bill and
karen can create files in directory /usr/local/share/Music. Other users can list
the contents of the directory but cannot create files there.

But we still have a problem. With the current permissions, files and directories created
within the Music directory will have the normal permissions of the users bill and
karen:

[bill@linuxbox ~]$ > /usr/local/share/Music/test_file U\L
[bill@linuxbox ~]$ 1ls -1 /usr/local/share/Mu Q
-rw-r--r-- 1 bill bill 0 2008-03- 24 20 5\ t._ le

Actually there are two probl rsNeQefaul qthis system is 0022 which
prevents group m % ritin o other members of the group.
This wouldy ? lem if the Fré ry only contained files, but since this di-

Jl sually organized in a hierarchy of artists and al-
Ql(x; members of? 111 need the ability to create files and directories inside di-

rectories created by other members. We need to change the umask used by bill and
karen to 0002 instead.

Second, each file and directory created by one member will be set to the primary group of
the user rather than the group music. This can be fixed by setting the setgid bit on the
directory:

[bill@linuxbox ~]$ sudo chmod g+s /usr/local/share/Music
[bill@linuxbox ~]$ 1ls -1d /usr/local/share/Music
drwxrwsr-x 2 root music 4096 2008-03-24 20:03 /usr/local/share/Music

Now we test to see if the new permissions fix the problem. bill sets his umask to
0002, removes the previous test file, and creates a new test file and directory:

[bill@linuxbox ~]$ umask 0002

105

Viewing Processes

[me@linuxbox ~]$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 2136 644 ? Ss Mare5 0:31 init
root 2 0.0 0.0 (0] 0 7 S< Maro5 0:00 [kt]
root 3 0.0 0.0 0 ? S< Mare5 0:00 [mi]
root 4 0.0 0.0 0 0 ? S< Mare5 0:00 [ks]
root 5 0.0 0.0 0 02 S< Mar@5 0:06 [wa]
root 6 0.0 0.0 0 0 ? S< Mar05 0:36 [ev]
root 7 0.0 0.0 0 0 ? S< Mar@5 0:00 [kh]

and many more. ..

This set of options displays the processes belonging to every user. Using the options
without the leading dash invokes the command with “BSD style” behavior. The Linux
version of psS can emulate the behavior of the ps program found in several different
Unix implementations. With these options, we get these additional columﬂ\k

cO-
Header Meaning N, esa\?l
USER US% a(é’e P 1 th ner of % [%:%

Table 10-2: BSD Style ps Column Headers

%CPU . p
P‘% ﬁS'percent
VSZ érﬁgmory size.
RSS Resident Set Size. The amount of physical memory (RAM) the
process is using in kilobytes.
START Time when the process started. For values over 24 hours, a date is
used.

Viewing Processes Dynamically With top

While the ps command can reveal a lot about what the machine is doing, it provides only
a snapshot of the machine's state at the moment the pS command is executed. To see a
more dynamic view of the machine's activity, we use the top command:

[me@linuxbox ~]$ top

111

10 — Processes

experiments, we're going to use a little program called x10go as our guinea pig. The
x1o0go program is a sample program supplied with the X Window System (the underly-
ing engine that makes the graphics on our display go) which simply displays a re-sizable
window containing the X logo. First, we'll get to know our test subject:

[me@linuxbox ~]$ xlogo

After entering the command, a small window containing the logo should appear some-
where on the screen. On some systems, X10g0 may print a warning message, but it may
be safely ignored.

Tip: If your system does not include the Xx10go program, try using gedit or
kwrite instead.

We can verify that X10go0 is running by resizing its window. If the logoe@'a.&v)ln the
new size, the program is running.

Notice how our shell prompt has not returnem I:%ée the 1l is waiting for the

program to finish, just like all the ot % % offar. If we close the

x1ogo window, the pr \ﬁ @ 8
Inter@(@“\goces@ age l‘?)

Let's observe what happens*when we run X10go again. First, enter the Xx10go command

and verify that the program is running. Next, return to the terminal window and press
Ctrl-c.

[me@linuxbox ~]$ xlogo
[me@linuxbox ~1$

In a terminal, pressing Ctrl-c, interrupts a program. This means that we politely asked
the program to terminate. After we pressed Ctrl-c, the x10go window closed and the
shell prompt returned.

Many (but not all) command-line programs can be interrupted by using this technique.

Putting A Process In The Background

Let's say we wanted to get the shell prompt back without terminating the x10go pro-

114

10 — Processes

the program but the program may choose to
ignore it.

28 WINCH Window Change. This is a signal sent by the
system when a window changes size. Some
programs , like top and less will respond to
this signal by redrawing themselves to fit the new
window dimensions.

For the curious, a complete list of signals can be seen with the following command:

[me@linuxbox ~]$ kill -1

Sending Signals To Multiple Processes With killall

It's also possible to send signals to multiple processes matchj Qprogram or
username by using the killall command. Here is t‘

Ll\ﬁwussfémgﬁ% ad of °°
{

To degn rdté, we will s@ @g)f instances of the x10go program and then ter-

minate them:

[me@linuxbox ~]$ xlogo &

[1] 18801

[me@linuxbox ~]$ xlogo &

[2] 18802

[me@linuxbox ~]$ killall xlogo

[1]- Terminated xlogo
[2]+ Terminated xlogo

Remember, as with kill, you must have superuser privileges to send signals to pro-
cesses that do not belong to you.

More Process Related Commands

Since monitoring processes is an important system administration task, there are a lot of
commands for it. Here are some to play with:

120

More Process Related Commands

Table 10-6: Other Process Related Commands

Command Description

pstree Outputs a process list arranged in a tree-like pattern showing the
parent/child relationships between processes.

vmstat Outputs a snapshot of system resource usage including, memory,
swap and disk I/O. To see a continuous display, follow the
command with a time delay (in seconds) for updates. For example:
vimstat 5. Terminate the output with Ctrl-c.

xload A graphical program that draws a graph showing system load over
time.

tload Similar to the x1oad program, but draws the graph in the terminal.
Terminate the output with Ctrl-c.

Summing Up \4

Most modern systems feature a mechanism for managj tﬁ@chsses Linux pro-
vides a rich set of tools for this purpose. legg 1s the world's most deployed
server operating system, this makes a How nhke some other systems,

Linux relies primarily ools for % agement. Though there are
graphlcal proce %‘C s are greatly preferred because of

, the c
thelr footprmt l{x% I tools may look pretty, they often create a

?v m load %@ omewhat defeats the purpose.

121

Modifying The Environment

them, and since programmers use them extensively, they write editors to express their
own desires as to how they should work.

Text editors fall into two basic categories: graphical and text based. GNOME and KDE
both include some popular graphical editors. GNOME ships with an editor called gedit,
which is usually called “Text Editor” in the GNOME menu. KDE usually ships with three
which are (in order of increasing complexity) kedit, kwrite, and kate.

There are many text-based editors. The popular ones you will encounter are nano, vi,
and emacs. The nano editor is a simple, easy-to-use editor designed as a replacement
for the pico editor supplied with the PINE email suite. The vi editor (on most Linux
systems replaced by a program named vim, which is short for “Vi IMproved”) is the tra-
ditional editor for Unix-like systems. It will be the subject of our next chapter. The
emacs editor was originally written by Richard Stallman. It is a gigantic, all-purpose,
does-everything programming environment. While readily available, it is seldom installed
on most Linux systems by default.

Using A Text Editor O u\k

All text editors can be invoked from the com, a&%mg the name of the editor
followed by the name of the file you “ s not already exist, the ed-
at ew file.

itor will assume that you wa, xample using gedit:
y y _‘ 66(‘(?11‘;gc\ 0{16‘8@ P g9
‘j t@l Ea ~1% gedg ene

This command will start the gedit text editor and load the file named “some_file”, if it
exists.

All graphical text editors are pretty self-explanatory, so we won't cover them here. In-
stead, we will concentrate on our first text-based text editor, nano. Let's fire up nano
and edit the . bashrc file. But before we do that, let's practice some “safe computing.”
Whenever we edit an important configuration file, it is always a good idea to create a
backup copy of the file first. This protects us in case we mess the file up while editing. To
create a backup of the . bashrc file, do this:

[me@linuxbox ~]$ cp .bashrc .bashrc.bak

It doesn't matter what you call the backup file, just pick an understandable name. The ex-
tensions “.bak”, “.sav”, “.0ld”, and “.orig” are all popular ways of indicating a backup
file. Oh, and remember that cp will overwrite existing files silently.

131

A Little Background

A Little Background

The first version of vi was written in 1976 by Bill Joy, a University of California at
Berkley student who later went on to co-found Sun Microsystems. V1 derives its name
from the word “visual,” because it was intended to allow editing on a video terminal with
a moving cursor. Previous to visual editors, there were line editors which operated on a
single line of text at a time. To specify a change, we tell a line editor to go to a particular
line and describe what change to make, such as adding or deleting text. With the advent
of video terminals (rather than printer-based terminals like teletypes) visual editing be-
came possible. Vi actually incorporates a powerful line editor called ex, and we can use
line editing commands while using v1i.

Most Linux distributions don't include real vi; rather, they ship with an enhanced re-
placement called vim (which is short for “vi improved”) written by Bram Moolenaar.
vim is a substantial improvement over traditional Unix vi and is usually symbolically
linked (or aliased) to the name “vi” on Linux systems. In the discussions that follow, we
will assume that we have a program called “vi” that is really vim. u

Starting And Stopping vi Sa\e .
To start Vi, we simply enter the folloNOte

) -('me A r\“‘ 6‘3’(
A\ 6)_\.}

\A B

= VIM - Vi Improved

~ version 7.1.138
= by Bram Moolenaar et al.
= Vim is open source and freely distributable

= Sponsor Vim development!
= type :help sponsor<Enter> for information

= type :qg<Enter> to exit
= type :help<Enter> or <F1> for on-1line help
= type :help version7<Enter> for version info

= Running in Vi compatible mode
= type :set nocp<Enter> for Vim defaults

137

12 — A Gentle Introduction To vi

nally written, not all video terminals had arrow keys, and skilled typists could use regular
keyboard keys to move the cursor without ever having to lift their fingers from the key-
board.

Many commands in Vi can be prefixed with a number, as with the “G” command listed
above. By prefixing a command with a number, we may specify the number of times a
command is to be carried out. For example, the command “5j” causes v1i to move the
cursor down five lines.

Basic Editing

Most editing consists of a few basic operations such as inserting text, deleting text, and
moving text around by cutting and pasting. Vi, of course, supports all of these operations
in its own unique way. V1 also provides a limited form of undo. If we press the “u” key
while in command mode, vi will undo the last change that you made. This will come in

handy as we try out some of the basic editing commands. \4
Appending Text O .

V1 has several different ways of entering insert m @ﬁa}ready used the i com-
mand to insert text. é

Let's go back to our foo {e@mment " 63
A\ l\e\l\rtﬁ ,\ 6
The g&gown fox ?@g? the lazy dog.

If we wanted to add some text to the end of this sentence, we would discover that the i
command will not do it, since we can't move the cursor beyond the end of the line. vi
provides a command to append text, the sensibly named “a” command. If we move the
cursor to the end of the line and type “a”, the cursor will move past the end of the line
and vi will enter insert mode. This will allow us to add some more text:

The quick brown fox jumped over the lazy dog. It was cool.

Remember to press the ESC key to exit insert mode.

Since we will almost always want to append text to the end of a line, vi offers a shortcut
to move to the end of the current line and start appending. It's the “A” command. Let's try
it and add some more lines to our file.

First, we'll move the cursor to the beginning of the line using the “0” (zero) command.

142

12 — A Gentle Introduction To vi

Line 3
Line 4
Line 5

Exit insert mode by pressing the ESc key and undo our change by pressing u.

Deleting Text

As we might expect, Vi offers a variety of ways to delete text, all of which contain one

of two keystrokes. First, the X key will delete a character at the cursor location. X may be

preceded by a number specifying how many characters are to be deleted. The d key is

more general purpose. Like X, it may be preceded by a number specifying the number of

times the deletion is to be performed. In addition, d is always followed by a movement

command that controls the size of the deletion. Here are some examples:
Command Deletes

ex\e “
X The curr x'e
3Xx ‘Qlt characte &th&e‘;??two characters.
dd \, \e\N The %
sddP \ e §

rrent line and the next four lines.
dw From the current cursor position to the beginning of
the next word.

Table 12-3: Text Deletion Commands

.

ds From the current cursor location to the end of the
current line.

do From the current cursor location to the beginning of
the line.

dn From the current cursor location to the first non-
whitespace character in the line.

dG From the current line to the end of the file.

d20G From the current line to the twentieth line of the file.

Place the cursor on the word “It” on the first line of our text. Press the X key repeatedly
until the rest of the sentence is deleted. Next, press the u key repeatedly until the deletion

144

12 — A Gentle Introduction To vi

used to cut text. Here are some examples combining the y command with various move-
ment commands:

Tablel3- 4: Yanking Commands

Command Copies

yy The current line.

%% The current line and the next four lines.

yw From the current cursor position to the beginning of
the next word.

y$ From the current cursor location to the end of the
current line.

yo From the current cursor location to the beginning of
the line.

yA From the current cursor location to the n\)\4
whitespace character in the li é,

yG From the curre of the flle

y20G " The t % % t line of the file.
Let's t@ \dy\iﬁ\plzklte Pla ,&0’(0n the first line of the text and type yYy to
IT @e@

copy t t line. Ne cursor to the last line (G) and type p to paste the
line below the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
The quick brown fox jumped over the lazy dog. It was cool.

Just as before, the u command will undo our change. With the cursor still positioned on
the last line of the file, type P to paste the text above the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4

146

Basic Editing

The quick brown fox jumped over the lazy dog. It was cool.
Line 5

Try out some of the other y commands in the table above and get to know the behavior of
both the p and P commands. When you are done, return the file to its original state.

Joining Lines

V1 is rather strict about its idea of a line. Normally, it is not possible to move the cursor
to the end of a line and delete the end-of-line character to join one line with the one be-
low it. Because of this, vi provides a specific command, J (not to be confused with j,

which is for cursor movement) to join lines together.

If we place the cursor on line 3 and type the J command, here's what happens:

The quick brown fox jumped over the lazy dog. It was l\)\K
Line 2 .

Line 3 Line 4 a\e .
Line 5 o\ n‘es 4

Searc \A@Wp& l’(l
ability &% rsor to locations based on searches. It can do this on ei-
er a single line or'pver-an*®ntire file. It can also perform text replacements with or with-

out confirmation from the user.

Searching Within A Line

The f command searches a line and moves the cursor to the next instance of a specified
character. For example, the command fa would move the cursor to the next occurrence
of the character “a” within the current line. After performing a character search within a
line, the search may be repeated by typing a semicolon.

Searching The Entire File

To move the cursor to the next occurrence of a word or phrase, the / command is used.
This works the same way as we learned earlier in the 1ess program. When you type the
/ command a “/” will appear at the bottom of the screen. Next, type the word or phrase to
be searched for, followed by the Enter key. The cursor will move to the next location
containing the search string. A search may be repeated using the previous search string

147

12 — A Gentle Introduction To vi

g or Esc Quit substituting.
1 Perform this substitution and then quit. Short for “last.”

Ctrl-e, Ctrl-y Scroll down and scroll up, respectively. Useful for viewing
the context of the proposed substitution.

If you type Yy, the substitution will be performed, n will cause V1 to skip this instance and
move on to the next one.

Editing Multiple Files

It's often useful to edit more than one file at a time. You might need to make changes to
multiple files or you may need to copy content from one file into another. With vi we
can open multiple files for editing by specifying them on the command line:

filel file2 file3...
vi filel file2 file A\Q C()

Let's exit our existing vi session and create \@tﬁ ed pe :w(to exit Vi,
i f

saving our modified text. Ne X(ﬂ ddlthl’la ome directory that
we can play with. We 11 W Xﬁ y C

3&:7 ﬁ Tom the 1s command:

in > ls-output.txt

[me@Yinuxbox ~]$ 1s

Let's edit our old file and our new one with vi:

[me@linuxbox ~]$ vi foo.txt ls-output.txt

v1i will start up and we will see the first file on the screen:

fihe quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

150

Adding Color

\033[0;36m Cyan \033[1;36m Light Cyan
\033[0;37m Light Grey \033[1;37m White

Let's try to make a red prompt. We'll insert the escape code at the beginning:

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$ "
<me@linuxbox ~>$

That works, but notice that all the text that we type after the prompt is also red. To fix
this, we will add another escape code to the end of the prompt that tells the terminal emu-
lator to return to the previous color:

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$\[\033[0m \(L»
<me@linuxbox ~>$

56.\‘5

That's better! te

It's also possible to set ﬁ d color r%%l]es listed below. The back-
ground colors d bold

@lfe@gx pe ﬁﬁ?@ tBackground Color
Sequence ound Color Sequence Background Color

\033[0;40m Black \033[0;44m Blue
\033[0;41m Red \033[0;45m Purple
\033[0;42m Green \033[0;46m Cyan
\033[0;43m Brown \@33[0;47m Light Grey

We can create a prompt with a red background by applying a simple change to the first
escape code:

<me@linuxbox ~>$ PS1="\[\033[0;41m\]<\u@\h \W>\$\[\033[Om\] "

Try out the color codes and see what you can create!

161

Moving The Cursor

Table 13-5: Breakdown Of Complex Prompt String

Sequence Action

\[Begins a non-printing character sequence. The purpose of this
is to allow bash to properly calculate the size of the visible
prompt. Without an accurate calculation, command line editing
features cannot position the cursor correctly.

\033[s Store the cursor position. This is needed to return to the prompt
location after the bar and clock have been drawn at the top of
the screen. Be aware that some terminal emulators do not
honor this code.

\033[0;0H Move the cursor to the upper left corner, which is line 0,
column 0.
\033[0;41m Set the background color to red.
\033[K Clear from the current cursor locatlon (the tq ¥er) to
le now red, the

the end of the line. Since the bac
line is cleared to that color
to the end of

e cursor position, which
remamw t co n%g
\033[1; 33 ext @f
P { e\, @ he&u t time. While this is a “printing” element, we

‘bar Note that clearing

de it in the non-printing portion of the prompt, since
we don't want bash to include the clock when calculating the
true size of the displayed prompt.

\033[0Om Turn off color. This affects both the text and background.
\033[u Restore the cursor position saved earlier.
\] End the non-printing characters sequence.

<\u@\h \W>\$ Prompt string.

Saving The Prompt

Obviously, we don't want to be typing that monster all the time, so we'll want to store our
prompt someplace. We can make the prompt permanent by adding it to our .bashrc
file. To do so, add these two lines to the file:

PS1="\[\033[s\033[0; OH\033[0; 41m\033[K\033[1; 33m\t\033[0m\033[u\]

163

How A Package System Works

Fedora, Red Hat rpm yum
Enterprise Linux, CentOS

Common Package Management Tasks

There are many operations that can be performed with the command line package man-
agement tools. We will look at the most common. Be aware that the low-level tools also
support creation of package files, an activity outside the scope of this book.

In the discussion below, the term “package_name” refers to the actual name of a pack-
age rather than the term “package_file,” which is the name of the file that contains
the package.

Finding A Package In A Repository

Using the high-level tools to search repository metadata, a package can be located based
on its name or description.

Table 14-3: Package Search Commands a\e .

Style Command(ﬁ tes
Debian "£ te
PF%@&U \G\N @éa&_\gs arch_string

Example: To search a yum repository for the emacs text editor, this command could be
used:

yum search emacs

Installing A Package From A Repository

High-level tools permit a package to be downloaded from a repository and installed with
full dependency resolution.

Table 14-4: Package Installation Commands

Style Command(s)
Debian apt-get update

169

Further Reading

Further Reading

Spend some time getting to know the package management system for your distribution.
Each distribution provides documentation for its package management tools. In addition,
here are some more generic sources:

e The Debian GNU/Linux FAQ chapter on package management provides an over-
view of package management on Debian systems :

http://www.debian.org/doc/FAQ/ch-pkgtools.en.html

e The home page for the RPM project:
http://www.rpm.org

e The home page for the YUM project at Duke University:
http://linux.duke.edu/projects/yum/

e For a little background, the Wikipedia has an article on metadata:
http://en.wikipedia.org/wiki/Metadata

175

15 — Storage Media

15 - Storage Media

In previous chapters we’ve looked at manipulating data at the file level. In this chapter,
we will consider data at the device level. Linux has amazing capabilities for handling
storage devices, whether physical storage, such as hard disks, or network storage, or vir-
tual storage devices like RAID (Redundant Array of Independent Disks) and LVM (Logi-
cal Volume Manager).

However, since this is not a book about system administration, we will not try to
this entire topic in depth. What we will try to do is introduce some of the 6111{& d

key commands that are used to manage storage devices.

To carry out the exercises in this chapter, we w111 us aSnQnW a CD-RW disc
(for systems equipped with a CD- ROM burn py dis aTam if the system is
so equipped.)

We will look at the.fo ﬁx&lds 00
a f1le s 2
Emount Unmou tem

e Tfsck — Check and repair a file system

e Tfdisk — Partition table manipulator

e mkfs — Create a file system

e fdformat — Format a floppy disk

e dd — Write block oriented data directly to a device

e genisoimage (mkisofs) — Create an ISO 9660 image file
e wodim (cdrecord) — Write data to optical storage media

e md5sum — Calculate an MD5 checksum

Mounting And Unmounting Storage Devices

Recent advances in the Linux desktop have made storage device management extremely

176

15 — Storage Media

tem) has been mounted on /media/live-1.0.10-8, and is type is09660 (a CD-
ROM). For purposes of our experiment, we're interested in the name of the device. When
you conduct this experiment yourself, the device name will most likely be different.

Warning: In the examples that follow, it is vitally important that you pay close at-
tention to the actual device names in use on your system and do not use the names
used in this text!

Also note that audio CDs are not the same as CD-ROMs. Audio CDs do not contain
file systems and thus cannot be mounted in the usual sense.

Now that we have the device name of the CD-ROM drive, let's unmount the disc and re-
mount it at another location in the file system tree. To do this, we become the superuser
(using the command appropriate for our system) and unmount the disc with the umount

(notice the spelling) command: \4
~0.V

£ o S oS
[root@linuxbox ~]# umount /dev/hdc NO
v\ P
ow! \ oY

The next step is to EW ount poszAdiQA mount point is simply a direc-
file syste

tory s special about it. It doesn't even have to
be an rectory, tho? mount a device on a non-empty directory, you will
not be able to see the direcfory's previous contents until you unmount the device. For our
purposes, we will create a new directory:

[root@linuxbox ~]# mkdir /mnt/cdrom

Finally, we mount the CD-ROM at the new mount point. The -t option is used to specify
the file system type:

[root@linuxbox ~]# mount -t is09660 /dev/hdc /mnt/cdrom

Afterward, we can examine the contents of the CD-ROM via the new mount point:

[root@linuxbox ~]# cd /mnt/cdrom

180

Mounting And Unmounting Storage Devices

[root@linuxbox cdrom]# 1s

Notice what happens when we try to unmount the CD-ROM:

[root@linuxbox cdrom]# umount /dev/hdc
umount: /mnt/cdrom: device is busy

Why is this? The reason is that we cannot unmount a device if the device is being used by
someone or some process. In this case, we changed our working directory to the mount
point for the CD-ROM, which causes the device to be busy. We can easily remedy the is-

sue by changing the working directory to something other than the mount point:

[root@linuxbox cdrom]# cd
[root@linuxbox ~]# umount /dev/hdc \(
~MN\
bU *
\S-
Now the device unmounts successfully. Sa

ernory usage e a statistic called “buffers.” Computer systems are de-
51gned to go as tfast as possible. One of the impediments to system speed is slow
devices. Printers are a good example. Even the fastest printer is extremely slow
by computer standards. A computer would be very slow indeed if it had to stop
and wait for a printer to finish printing a page. In the early days of PCs (before
multi-tasking), this was a real problem. If you were working on a spreadsheet or
text document, the computer would stop and become unavailable every time you
printed. The computer would send the data to the printer as fast as the printer
could accept it, but it was very slow since printers don't print very fast. This prob-
lem was solved by the advent of the printer buffer, a device containing some
RAM memory that would sit between the computer and the printer. With the
printer buffer in place, the computer would send the printer output to the buffer
and it would quickly be stored in the fast RAM so the computer could go back to
work without waiting. Meanwhile, the printer buffer would slowly spool the data
to the printer from the buffer's memory at the speed at which the printer could ac-
cept it.

Why Ulg\cN
at %ﬁ ree command, which displays statistics about

181

15 — Storage Media

drives, we can manage those devices, too. Preparing a blank floppy for use is a two step
process. First, we perform a low-level format on the diskette, and then create a file sys-
tem. To accomplish the formatting, we use the fdformat program specifying the name
of the floppy device (usually /dev/fd0):

[me@linuxbox ~]$ sudo fdformat /dev/fdo

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done

Verifying ... done

Next, we apply a FAT file system to the diskette with mkfs:

[me@linuxbox ~]$ sudo mkfs -t msdos /dev/fdo

Notice that we use the “msdos” file system type to get the older (and m‘) u&eﬂe
allocation tables. After a diskette is prepared, it may be mounteé ices.

Moving Data Dlrectly ToIFro N@t
While we usually think o ompu&rs & émzed into files, it is also

possible to thin \&{‘3 raw form a disk drive, for example, we see
that H?ﬁ@ rge n
i

data that the operating system sees as di-
rector iles. Howev uld treat a disk drive as simply a large collection of
data blocks, we could perform useful tasks, such as cloning devices.

The dd program performs this task. It copies blocks of data from one place to another. It
uses a unique syntax (for historical reasons) and is usually used this way:

dd if=input file of=output file [bs=block size [count=blocks]]

Let’s say we had two USB flash drives of the same size and we wanted to exactly copy
the first drive to the second. If we attached both drives to the computer and they are as-
signed to devices /dev/sdb and /dev/sdc respectively, we could copy everything on
the first drive to the second drive with the following:

dd if=/dev/sdb of=/dev/sdc

190

Writing CD-ROM Images

Blanking A Re-Writable CD-ROM

Rewritable CD-RW media needs to be erased or blanked before it can be reused. To do
this, we can use wodim, specifying the device name for the CD writer and the type of
blanking to be performed. The wodim program offers several types. The most minimal
(and fastest) is the “fast” type:

wodim dev=/dev/cdrw blank=fast

Writing An Image

To write an image, we again use wodim, specifying the name of the optical media writer
device and the name of the image file:

wodim dev=/dev/cdrw image.iso O ‘UY\
\G ‘(‘
In addition to the device name and i Qﬁ. m su rts a very large set of op-
tions. Two common ones are outp t

which writes the disc in
disc-at-once mod hﬁ d be eparing a disc for commercial
t mode fo JI;"?ls t k-at-

reprodu }ti\@ once, which is useful for recording

Summing Up

In this chapter we have looked at the basic storage management tasks. There are, of
course, many more. Linux supports a vast array of storage devices and file system
schemes. It also offers many features for interoperability with other systems.

Further Reading

Take a look at the man pages of the commands we have covered. Some of them support
huge numbers of options and operations. Also, look for on-line tutorials for adding hard
drives to your Linux system (there are many) and working with optical media.

Extra Credit

It’s often useful to verify the integrity of an iso image that we have downloaded. In most
cases, a distributor of an iso image will also supply a checksum file. A checksum is the re-
sult of an exotic mathematical calculation resulting in a number that represents the con-

193

Secure Communication With Remote Hosts

checking.
Host key verification failed.

This message is caused by one of two possible situations. First, an attacker may be at-
tempting a “man-in-the-middle” attack. This is rare, since everybody knows that ssh
alerts the user to this. The more likely culprit is that the remote system has been changed
somehow; for example, its operating system or SSH server has been reinstalled. In the in-
terests of security and safety however, the first possibility should not be dismissed out of
hand. Always check with the administrator of the remote system when this message oc-
curs.

After it has been determined that the message is due to a benign cause, it is safe to correct
the problem on the client side. This is done by using a text editor (vim perhaps) to re-
move the obsolete key from the ~/.ssh/known_hosts file. In the example message

above, we see this:
\ \K

\ ¥, g
Offending key in /home/me/.ssh/known_hosts:1 \e CU *
b()‘-‘

This means that line one of the ON S f11e 13? the offending key. Delete

this line from the file, i) rogram w16‘ Ig ept new authentication cre-
dentials from stem.

{ e mg as ll mote system, Ssh also allows us to execute a sin-

ommand on a tem. For example, to execute the free command on a re-

mote host named remote sys and have the results displayed on the local system:

[me@linuxbox ~]%$ ssh remote-sys free
me@twin4's password:
total used free shared buffers cached

Mem: 775536 507184 268352 (0] 110068 154596
-/+ buffers/cache: 242520 533016

Swap: 1572856 0 1572856
[me@linuxbox ~1$

It’s possible to use this technique in more interesting ways, such as this example in which
we perform an Is on the remote system and redirect the output to a file on the local sys-
tem:

205

Secure Communication With Remote Hosts

scp And sftp

The OpenSSH package also includes two programs that can make use of an SSH-en-
crypted tunnel to copy files across the network. The first, SCp (secure copy) is used
much like the familiar cp program to copy files. The most notable difference is that the
source or destination pathnames may be preceded with the name of a remote host, fol-
lowed by a colon character. For example, if we wanted to copy a document named doc -
ument. txt from our home directory on the remote system, remote-sys, to the cur-
rent working directory on our local system, we could do this:

[me@linuxbox ~]$ scp remote-sys:document.txt

me@remote-sys's password:

document. txt 100% 5581 5.5KB/s 00:00
[me@linuxbox ~1$

As with ssh, you may apply a username to the beginning of the remotg;l\ks name if
the desired remote host account name does not match that\éhe G

oc;a-

The secon q\mlco ying progz ’},tp hich, as its name implies, is a secure re-
f e f

Pa‘f p works much like the original ftp program that
we Used earlier; ho ead of transmitting everything in cleartext, it uses an SSH
encrypted tunnel. STtp has an important advantage over conventional ftp in that it does
not require an FTP server to be running on the remote host. It only requires the SSH
server. This means that any remote machine that can connect with the SSH client can also
be used as a FTP-like server. Here is a sample session:

[me@linuxbox ~]$ scp bob@r

[me@linuxbox ~]$ sftp remote-sys

Connecting to remote-sys...

me@remote-sys's password:

sftp> 1s

ubuntu-8.04-desktop-1386.1is0

sftp> lcd Desktop

sftp> get ubuntu-8.04-desktop-i386.iso

Fetching /home/me/ubuntu-8.04-desktop-i386.iso to ubuntu-8.04-
desktop-1386.1iso0

/home/me/ubuntu-8.04-desktop-i386.iso 100% 699MB 7.4MB/s 01:35
sftp> bye

207

17 — Searching For Files

have the file extension “.BAK” (which is often used to designate backup files), we could
use this command:

find ~ -type f -name '*.BAK' -delete

In this example, every file in the user’s home directory (and its subdirectories) is searched
for filenames ending in . BAK. When they are found, they are deleted.

Warning: It should go without saying that you should use extreme caution when
using the -delete action. Always test the command first by substituting the
-print action for -delete to confirm the search results.

Before we go on, let’s take another look at how the logical operators affect actions. Con-

sider the following command: \4
coY

find ~ -type f -name '*.BAK' -print

\
sa“ ‘
As we have seen, this commafg@mor every re pe fT) whose name

ends with .BAK (- il e relatlve pathname of each
matchj % Ed output (o ever, the reason the command performs
the wﬁ Q is determ g gical relationships between each of the tests and
actions. Remember, there i3, by default, an implied -and relationship between each test

and action. We could also express the command this way to make the logical relation-
ships easier to see:

find ~ -type f -and -name '*.BAK' -and -print

With our command fully expressed, let’s look at how the logical operators affect its exe-
cution:

Test/Action Is Performed Only If...

-print -type fand -name '*.BAK' are true

-name ‘*.BAK’ -type fistrue

-type T Is always performed, since it is the first test/action in an

-and relationship.

218

17 — Searching For Files

Improving Efficiency

When the -exec action is used, it launches a new instance of the specified command
each time a matching file is found. There are times when we might prefer to combine all
of the search results and launch a single instance of the command. For example, rather
than executing the commands like this:

1s -1 file1l
1ls -1 file2

we may prefer to execute them this way:
1s -1 filel file2

thus causing the command to be executed only one time rather than multiple times. There
are two ways we can do this. The traditional way, using the external command xargs
and the alternate way, using a new feature in Tind itself. We’ll talk about the alternate

way first
By changing the trailing semicolon character to a plus sign, we activ u%&
find to combine the results of the search into an argument hék si xecutlon of
the desired command. Going back to our example, thlies

=21

find ~ -type f -name (}‘(ec 1s -1 {Q"/ bint
me/me/bin/foo

-rwxr-xr-x 1 m& 007 10 2
-rw- r--r- ?gquf :53 /home/me/foo. txt

will execute 1s each time a rnatchmg file is found. By changing the command to:

find ~ -type f -name 'foo*' -exec 1ls -1 '{}' +
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

we get the same results, but the system only has to execute the 1s command once.

xargs

The xargs command performs an interesting function. It accepts input from standard in-
put and converts it into an argument list for a specified command. With our example, we
would use it like this:

220

find — Find Files The Hard Way

find ~ -type f -name 'foo*' -print | xargs 1ls -1
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

Here we see the output of the find command piped into Xargs which, in turn, con-
structs an argument list for the 1s command and then executes it.

Note: While the number of arguments that can be placed into a command line is
quite large, it’s not unlimited. It is possible to create commands that are too long for
the shell to accept. When a command line exceeds the maximum length supported
by the system, xargs executes the specified command with the maximum number
of arguments possible and then repeats this process until standard input is ex-
hausted. To see the maximum size of the command line, execute xargs with the

--show-1imits option. K
e .CO Y

Dealing With Funny Filena eSa\

Unix-like systems llo ﬁ&ld d paces dﬁ 1whnes') in filenames.
ogram

This causes construct argument lists for
othe @mn embedded be treated as a delimiter, and the result-
P and ace separated word as a separate argument. To
overcome this, r‘ga xarg allow the optional use of a null character as ar-

gument separator. A null character is defined in ASCII as the character repre-
sented by the number zero (as opposed to, for example, the space character, which
is defined in ASCII as the character represented by the number 32). The find
command provides the action -print®, which produces null-separated output,
and the xargs command has the - -null option, which accepts null separated
input. Here’s an example:

find ~ -iname '*.jpg' -print® | xargs --null 1s -1

Using this technique, we can ensure that all files, even those containing embedded
spaces in their names, are handled correctly.

A Return To The Playground

It’s time to put find to some (almost) practical use. We’ll create a playground and try
out some of what we have learned.

First, let’s create a playground with lots of subdirectories and files:

221

Compressing Files

nally, we decompressed the file back to its original form.

gz1p can also be used in interesting ways via standard input and output:

[me@linuxbox ~]$ 1s -1 /etc | gzip > foo.txt.gz

This command creates a compressed version of a directory listing.

The gunzip program, which uncompresses gzip files, assumes that filenames end in the
extension .z, so it’s not necessary to specify it, as long as the specified name is not in
conflict with an existing uncompressed file:

[me@linuxbox ~]$ gunzip foo.txt

If our goal were only to view the contents of a compressed text file, we C‘l% this:

:“\ e =C ’
[me@linuxbox ~]$ gunzip -c foo.‘xh‘@%d"

DS oD
Alternately, there is,a g@1 stuppli ﬁj;% p d zcat, that is equivalent to

gun21p\\1]\te\N option. It ca e cat command on gzip compressed
PIeY " pad®

[me@linuxbox ~]$ zcat foo.txt.gz | less

Tip: There is a z1ess program, too. It performs the same function as the pipeline
above.

bzip2

The bzip2 program, by Julian Seward, is similar to gzip, but uses a different compres-
sion algorithm that achieves higher levels of compression at the cost of compression
speed. In most regards, it works in the same fashion as gzip. A file compressed with
bzip2 is denoted with the extension .bz2:

229

Archiving Files

ern versions of GNU tar support both gzip and bzip2 compression directly, with the use
of the z and j options, respectively. Using our previous example as a base, we can sim-
plify it this way:

[me@linuxbox ~]$ find playground -name 'file-A' | tar czf
playground.tgz -T -

If we had wanted to create a bzip2 compressed archive instead, we could have done this:

[me@linuxbox ~]$ find playground -name 'file-A' | tar cjf
playground.tbz -T -

By simply changing the compression option from z to j (and changing the output file’s
extension to . tbz to indicate a bzip2 compressed file) we enabled bzip2 C ession.

Another interesting use of standard input and output w\:é @ dmmand involves
transferring files between systems over a ne that we had two machines
running a Unix-like system equippe ssh. Imsuch a scenario, we could

local systern

transfer a directory fro% a rﬁm (narned { %% y's for this example) to our

‘ [i ~? remote-stuff
[me@linuxbox ~ cd remote-stuff
[me@linuxbox remote-stuff]$ ssh remote-sys 'tar cf - Documents' | tar
xf -
me@remote-sys’s password:
[me@linuxbox remote-stuff]$ 1s
Documents

Here we were able to copy a directory named Documents from the remote system re -
mote-sys to a directory within the directory named remote-stuff on the local sys-
tem. How did we do this? First, we launched the tar program on the remote system us-
ing ssh. You will recall that ssh allows us to execute a program remotely on a net-
worked computer and “see” the results on the local system—the standard output pro-
duced on the remote system is sent to the local system for viewing. We can take advan-
tage of this by having tar create an archive (the ¢ mode) and send it to standard output,
rather than a file (the T option with the dash argument), thereby transporting the archive
over the encrypted tunnel provided by ssh to the local system. On the local system, we
execute tar and have it expand an archive (the X mode) supplied from standard input

235

POSIX Basic Vs. Extended Regular Expressions

Enter the IEEE (Institute of Electrical and Electronics Engineers). In the mid-
1980s, the IEEE began developing a set of standards that would define how Unix
(and Unix-like) systems would perform. These standards, formally known as
IEEE 1003, define the application programming interfaces (APIs), shell and utili-
ties that are to be found on a standard Unix-like system. The name “POSIX,”
which stands for Portable Operating System Interface (with the “X” added to the
end for extra snappiness), was suggested by Richard Stallman (yes, that Richard
Stallman), and was adopted by the IEEE.

Alternation

The first of the extended regular expression features we will discuss is called alternation,

which is the facility that allows a match to occur from among a set of expressions. Just as

a bracket expression allows a single character to match from a set of spe(:lflﬂ(haracters

alternation allows matches from a set of strings or other regular ex Félﬁlo S
e

To demonstrate, we’ll use grep in conjunction w1t \ t’s try a plain old

string match: . m N O-‘.e o r)‘/-l
[me@llnuxbo\r{f &‘%" IZgA@-‘ I

‘iﬁ@!xbox :]$ echges ep AAA

A pretty straightforward example, in which we pipe the output of echo into grep and
see the results. When a match occurs, we see it printed out; when no match occurs, we
see no results.

Now we’ll add alternation, signified by the vertical-bar metacharacter:

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB'
AAA

[me@linuxbox ~]$ echo "BBB" | grep -E 'AAA|BBB'
BBB

[me@linuxbox ~]%$ echo "CCC" | grep -E 'AAA|BBB'
[me@linuxbox ~1$

Here we see the regular expression 'AAA|BBB', which means “match either the string
AAA or the string BBB.” Notice that since this is an extended feature, we added the -E

255

Slicing And Dicing

section to standard output. It can accept multiple file arguments or input from standard in-
put.

Specifying the section of the line to be extracted is somewhat awkward and is specified
using the following options:

Table 20-3: cut Selection Options

Option Description

-C char_list Extract the portion of the line defined by char_list. The list
may consist of one or more comma-separated numerical
ranges.

-f field_1list Extract one or more fields from the line as defined by
field_list. The list may contain one or more fields or field
ranges separated by commas.

-d delim_char When -f is specified, use delim_char as the f1eld miting
character. By default, fields rnust be se le tab
character.

--complement Extract the emf eﬁ@'cept for those portions
spec1

As wfé:w Nay Cut Q[’L’rather inflexible. cut is best used to extract
% iles that? @% y other programs, rather than text directly typed by hu-
a

ns. We’ll take a distros. txt file to see if it is “clean” enough to be a
good specimen for our cut examples. If we use cat with the -A option, we can see if
the file meets our requirements of tab-separated fields:

[me@linuxbox ~]$ cat -A distros.txt
SUSEAI10.2A112/07/2006%
FedoranrI10AI11/25/2008%
SUSEAI11.0A106/19/2008%
UbuntuAI8.04A1I04/24/2008%
FedoranrI8AI11/08/2007$
SUSEAI10.3/110/04/2007%
UbuntuArI6.10AI10/26/2006%
FedoranrI7AI05/31/2007%
UbuntuAI7.10AI10/18/2007%
UbuntuAI7.04A1I04/19/2007%
SUSEAI10.1/A1I05/11/2006%
FedoranrI6NI10/24/2006%
FedoranrI9AIes5/13/2008%

277

20 — Text Processing

mail
news

Using the -d option, we are able to specify the colon character as the field delimiter.

paste

The paste command does the opposite of cut. Rather than extracting a column of text
from a file, it adds one or more columns of text to a file. It does this by reading multiple
files and combining the fields found in each file into a single stream on standard output.
Like cut, paste accepts multiple file arguments and/or standard input. To demonstrate

how paste operates, we will perform some surgery on our distros. txt file to pro-
duce a chronological list of releases.

From our earlier work with sort, we will first produce a list of distros sorted by date
and store the result in a file called distros-by-date. txt: u\(

A4
[me@linuxbox ~]$ sort -k 3.7nbr -k 3. 1“brt@96-\’§t‘r°5't)‘t > dis

tros-by-date. txt

Next, we will use £ éwx ﬁx Qg}st As@& the file (the distro name and
Versm%andéﬂ\l eSult in a aém o-versions.txt:

[me@linuxbox ~]$ cut -f 1,2 distros-by-date.txt > distros-versions.t
xt

[me@linuxbox ~]$ head distros-versions.txt
Fedora 10

Ubuntu 8.10

SUSE 11.0

Fedora 9

Ubuntu 8.04

Fedora 8

Ubuntu 7.10

SUSE 10.3

Fedora 7

Ubuntu 7.04

The final piece of preparation is to extract the release dates and store them a file named
distro-dates. txt:

280

20 — Text Processing

ROT13: The Not-So-Secret Decoder Ring

One amusing use of tr is to perform ROT13 encoding of text. ROT13 is a trivial
type of encryption based on a simple substitution cipher. Calling ROT13 “encryp-
tion” is being generous; “text obfuscation” is more accurate. It is used sometimes
on text to obscure potentially offensive content. The method simply moves each
character 13 places up the alphabet. Since this is half way up the possible 26 char-
acters, performing the algorithm a second time on the text restores it to its original
form. To perform this encoding with tr:

echo "secret text" | tr a-zA-Z n-za-mN-ZA-M

frperg grkg

Performing the same procedure a second time results in the translation:

echo "frperg grkg" | tr a-zA-Z n-za-mN-ZA-M

secret text

A number of email programs and Usenet news readers support ROT13 encodin
Wikipedia contains a good article on the subject: i‘
http://en.wikipedia.org/wiki/ROT13 CO u

tr can perform another trick, too 6th option t%% ueeze” (delete) re-

peated instances of a ch{f{' r‘ l
c" | tr -s ab

pox ~1$% echP

Here we have a string containing repeated characters. By specifying the set “ab” to tr,
we eliminate the repeated instances of the letters in the set, while leaving the character
that is missing from the set (“c”) unchanged. Note that the repeating characters must be
adjoining. If they are not:

[me@linuxbox ~]%$ echo "abcabcabc" | tr -s ab
abcabcabc

the squeezing will have no effect.

sed

The name sed is short for stream editor. It performs text editing on a stream of text, ei-

290

Editing On The Fly

Fedora 8 11/08/2007

In this example, we print a range of lines, starting with line 1 and continuing to line 5. To
do this, we use the p command, which simply causes a matched line to be printed. For
this to be effective however, we must include the option -n (the no auto-print option) to
cause sed not to print every line by default.

Next, we’ll try a regular expression:

[me@linuxbox ~]$ sed -n '/SUSE/p' distros.txt

SUSE 10.2 12/07/2006
SUSE 11.0 06/19/2008
SUSE 10.3 10/04/2007
SUSE 10.1 05/11/2006

By including the slash-delimited regular expression / SUSE/ \ @am_)“solate the
lines containing it in much the same manner as grep. é

Finally, we’ll try negation by adding an @&a’(){0 the address:

, _,\m

[me@linuxb '/S ’(d.@—l\as txt
Fedor % 11/25/% {j;&_

jg@ 04__0
Ubuntu 6 10/26/2006
Fedora 7 05/31/20607
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Here we see the expected result: all of the lines in the file except the ones matched by the
regular expression.

So far, we’ve looked at two of the sed editing commands, S and p. Here is a more com-
plete list of the basic editing commands:

Table 20-8: sed Basic Editing Commands

Command Description

293

20 — Text Processing

T = Q 2

Q

s/regexp/replacement/

o SO Fg,

Output current line number.

Append text after the current line.
Delete the current line.

Insert text in front of the current line.

Print the current line. By default, sed prints every
line and only edits lines that match a specified
address within the file. The default behavior can
be overridden by specifying the -n option.

Exit sed without processing any more lines. If the
- N option is not specified, output the current line.

Exit sed without processing any more lines.

Substitute the contents of replacement wherev
regexp is found. replacement may include t“
special character &, which i ext
matched by regexp | \ eplacement may
1nclude \9 which are
e co re in subexpressmns
% ; see the discussion
OoW. After the trailing slash
p acement, an optional flag may be

\
P (e\, P ag c1f1ed to modify the s command’s behavior.

y/setl/set2

Perform transliteration by converting characters
from set1 to the corresponding characters in set2.
Note that unlike tr, sed requires that both sets be
of the same length.

The s command is by far the most commonly used editing command. We will demon-
strate just some of its power by performing an edit on our distros. txt file. We dis-
cussed before how the date field in distros. txt was not in a “computer-friendly” for-
mat. While the date is formatted MM/DD/YYYY, it would be better (for ease of sorting)
if the format were YYYY-MM-DD. To perform this change on the file by hand would be
both time consuming and error prone, but with sed, this change can be performed in one

step:

[me@linuxbox ~]1$ sed 's/\([0-91\{2\}\)\/\([0-9]1\{2\}\)\/\([0-9]\{4\}\

294

21 — Formatting Output

21 - Formatting Output

In this chapter, we continue our look at text-related tools, focusing on programs that are
used to format text output, rather than changing the text itself. These tools are often used
to prepare text for eventual printing, a subject that we will cover in the next chapter. The
programs that we will cover in this chapter include:

e Nl — Number lines
e Told - Wrap each line to a specified length u\‘
e fmt — A simple text formatter

e pr — Prepare text for prmtmg tesa_\e

e printf — Format and

e grof f oc"l{egmmpz te
@i‘\ﬁe\,:orm @%

We’ll look at some of the simple formatting tools first. These are mostly single-purpose
programs, and a bit unsophisticated in what they do, but they can be used for small tasks
and as parts of pipelines and scripts.

nl — Number Lines

The nl program is a rather arcane tool used to perform a simple task. It numbers lines. In
its simplest use, it resembles cat -n:

[me@linuxbox ~]$ nl distros.txt | head
1 SUSE 10.2 12/07/2006
2 Fedora 10 11/25/2008
3 SUSE 11.0 06/19/2008
4 Ubuntu 8.04 04/24/2008
5 Fedora 8 11/08/2007
6 SUSE 10.3 10/04/2007
7 Ubuntu 6.10 10/26/2006

305

21 — Formatting Output

8 Fedora 7 05/31/2007
9 Ubuntu 7.10 10/18/2007
10 Ubuntu 7.04 04/19/2007

Like cat, nl can accept either multiple files as command line arguments, or standard in-
put. However, n1 has a number of options and supports a primitive form of markup to al-
low more complex kinds of numbering.

nl supports a concept called “logical pages” when numbering. This allows nl to reset
(start over) the numerical sequence when numbering. Using options, it is possible to set
the starting number to a specific value and, to a limited extent, its format. A logical page
is further broken down into a header, body, and footer. Within each of these sections, line
numbering may be reset and/or be assigned a different style. If n1 is given multiple files,
it treats them as a single stream of text. Sections in the text stream are indicated by the
presence of some rather odd-looking markup added to the text:

Table 21-1: nl Markup O u\k
Markup Meaning a\e C
AN Start of logical page headﬁ()t

N\ Start of loﬂ O
NI LAY f“"?s?JO

Each of the above markumeents must appear alone on its own line. After processing a
markup element, N1 deletes it from the text stream.

Here are the common options for n1l:

Table 21-2: Common nl Options

Option Meaning

-b style Set body numbering to style, where style is one of the following:
a = number all lines
t = number only non-blank lines. This is the default.

N = none
pregexp = number only lines matching basic regular expression
regexp.

-f style Set footer numbering to style. Default is n (none).

-h style Set header numbering to style. Default is n (none).

306

21 — Formatting Output

signs negative numbers.
width

.precision

A number specifying the minimum field width.

For floating point numbers, specify the number of digits of

precision to be output after the decimal point. For string
conversion, precision specifies the number of characters to

output.

Here are some examples of different formats in action:

Table 21-6: print Conversion Specification Examples

Argument Format Result
380 "%d" 380
380 "%t X" 0x17c

380 "%05d" (O&%NO"

380 "%010.5f" 0380.00000
380 "%+d" +380
380 "%-d" 380

Notes

Simple formatting of an
integer. \4
Integer for

g& 1:té:@baer using
t¥nate format” flag.

f rmatted with
‘S zeros (padding)
and a minimum field width
of five characters.

Number formatted as a
floating point number with
padding and five decimal
places of precision. Since
the specified minimum
field width (5) is less than
the actual width of the
formatted number, the
padding has no effect.

By increasing the
minimum field width to 10
the padding is now visible.

The + flag signs a positive
number.

The - flag left aligns the
formatting.

316

21 — Formatting Output

ple tasks, but what about larger jobs? One of the reasons that Unix became a popular op-
erating system among technical and scientific users (aside from providing a powerful
multitasking, multiuser environment for all kinds of software development) is that it of-
fered tools that could be used to produce many types of documents, particularly scientific
and academic publications. In fact, as the GNU documentation describes, document
preparation was instrumental to the development of Unix:

The first version of UNIX was developed on a PDP-7 which was sitting around Bell
Labs. In 1971 the developers wanted to get a PDP-11 for further work on the
operating system. In order to justify the cost for this system, they proposed that they
would implement a document formatting system for the AT&T patents division. This
first formatting program was a reimplementation of Mclllroy's “roff', written by J.
F. Ossanna.

Two main families of document formatters dominate the field: those descended from the
original roff program, including nroff and troff, and those based on Donald
Knuth’s TEX (pronounced “tek”) typesetting system. And yes, the dropped “E” in the
middle is part of its name. v

The name “roff” is derived from the term “run off” as in, “I’ foQy for you.”
The nroff program is used to format docurne to devices that use

monospaced fonts, such as character termm riter-s rlnters. At the time

of its introduction, this inclu p nung devi %%e to computers. The

later troff progr@m for sd%ments for u esétters, devices used to pro-

duce ° Cameré0 r comme ost computer printers today are able
put of t

to sim! ﬁ famlly also includes some other programs
that ar used to prepare pgru documents These include egn (for mathematical

equations) and tb1 (for tables).

The TEX system (in stable form) first appeared in 1989 and has, to some degree, dis-
placed troff as the tool of choice for typesetter output. We won’t be covering TEX

here, due both to its complexity (there are entire books about it) and to the fact that it is
not installed by default on most modern Linux systems.

Tip: For those interested in installing TEX, check out the texlive package

which can be found in most distribution repositories, and the LyX graphical content
editor.

groff

groff is a suite of programs containing the GNU implementation of troff. It also in-
cludes a script that is used to emulate Nnroff and the rest of the roff family as well.

318

Compiling A C Program

What’s important here is that there are no error messages. If there were, the configuration
failed, and the program will not build until the errors are corrected.

We see configure created several new files in our source directory. The most impor-
tant one is Makefile. Makefile is a configuration file that instructs the make pro-
gram exactly how to build the program. Without it, make will refuse to run. Makefile
is an ordinary text file, so we can view it:

[me@linuxbox diction-1.11]% less Makefile

The make program takes as input a makefile (which is normally named Makef1ile), that
describes the relationships and dependencies among the components that comprise the
finished program.

The first part of the makefile defines variables that are substituted in later sections of the

makefile. For example we see the line: u\(
\o (:,O *
CC= gcc Sa\c

which defines the C ﬁ"ﬁ@' e gCC Lﬁ‘ %3akeflle we see one instance

where it gei ?)
Py (e e\~
dlctlon \)di@i?.o sentence.o misc.o getopt.o getoptl.o

$(CC) -0 $@ $(LDFLAGS) diction.o sentence.o misc.o \
getopt.o getoptl.o $(LIBS)

A substitution is performed here, and the value $(CC) is replaced by gcc at run time.

Most of the makefile consists of lines, which define a target, in this case the executable
file diction, and the files on which it is dependent. The remaining lines describe the
command(s) needed to create the target from its components. We see in this example that
the executable file diction (one of the final end products) depends on the existence of
diction.o, sentence.o, misc.o, getopt.o, and getoptl.o. Later on, in the
makefile, we see definitions of each of these as targets:

diction.o: diction.c config.h getopt.h misc.h sentence.h
getopt.o: getopt.c getopt.h getopt_int.h

getoptl.o: getoptl.c getopt.h getopt_int.h

misc.o: misc.c config.h misc.h

347

24 — Writing Your First Script

turns on the option to highlight search results. Say we search for the word “echo.”

With this option on, each instance of the word will be highlighted.
:set tabstop=4

sets the number of columns occupied by a tab character. The default is 8 columns.
Setting the value to 4 (which is a common practice) allows long lines to fit more

easily on the screen.
:set autoindent

turns on the “auto indent” feature. This causes vim to indent a new line the same
amount as the line just typed. This speeds up typing on many kinds of program-
ming constructs. To stop indentation, type Ctr1l-d.

These changes can be made permanent by adding these commands (without the
leading colon characters) to your ~/ . vimrc file.

Summing Up u\(

In this first chapter of scripting, we have looked at how scripéé }r E@Qna made to

easily execute on our system. We also saw how wg us formatting tech-

niques to improve the readability (and thus, 1lity) i—Tr scripts. In future
chapters, ease of maintenance %ill agailt and aga{ %‘%ﬂ al principle in good

script writing. . \N (A_ O
Furtl@'ﬁ@l}mge Eage ?)8

e For “Hello World” programs and examples in various programming languages,
see:
http://en.wikipedia.org/wiki/Hello_world

e This Wikipedia article talks more about the shebang mechanism:
http://en.wikipedia.org/wiki/Shebang (Unix

360

25 — Starting A Project

25 — Starting A Project

Starting with this chapter, we will begin to build a program. The purpose of this project is
to see how various shell features are used to create programs and, more importantly, cre-
ate good programs.

The program we will write is a report generator. It will present various statistics about
our system and its status, and will produce this report in HTML format, so we can view it
with a web browser such as Firefox or Chrome.

Programs are usually built up in a series of stages, with each ﬁg]d\;b\g tures and
1

capabilities. The first stage of our program will produ ﬂ\@z HTML page that
contains no system information. That will co é.

First Stage: Mlnlﬁemn§0 ‘3’(

The f1rs\lr‘ now is %% Qwell formed HTML document. It looks
<HTML>
<HEAD>
<TITLE>Page Title</TITLE>
</HEAD>
<BODY>
Page body.

</BODY>
</HTML>

If we enter this into our text editor and save the file as foo.html, we can use the fol-
lowing URL in Firefox to view the file:

file:///home/username/foo.html
The first stage of our program will be able to output this HTML file to standard output.

We can write a program to do this pretty easily. Let’s start our text editor and create a new
file named ~/bin/sys_info_page:

361

25 — Starting A Project

Try “cp --help' for more information.

We assign values to two variables, T00 and fool. We then perform a cp, but misspell
the name of the second argument. After expansion, the Cp command is only sent one ar-
gument, though it requires two.

There are some rules about variable names:

1. Variable names may consist of alphanumeric characters (letters and numbers) and
underscore characters.

2. The first character of a variable name must be either a letter or an underscore.
3. Spaces and punctuation symbols are not allowed.

The word “variable” implies a value that changes, and in many applications, variables are
used this way. However, the variable in our application, title, is used as a constant. A
constant is just like a variable in that it has a name and contains a value. The differ: is
that the value of a constant does not change. In an application that per g&c
calculations, we might define PI as a constant, and assign it th‘g ﬁ@ 1415, in-
stead of using the number literally throughout our p 1’makes no distinc-
tion between variables and constants; they ar‘@r pro er’s convenience.
A common convention is to u leftels to desi ﬁ a:l‘:ts and lower case

letters for true Varlables wﬁ ﬁg our sgﬂ @1 ly with this convention:

Program to output a system information page
TITLE="System Information Report For $HOSTNAME"

echo "<HTML>
<HEAD>
<TITLE>$TITLE</TITLE>
</HEAD>
<BODY>
<H1>$TITLE</H1>
</BODY>
</HTML>"

We also took the opportunity to jazz up our title by adding the value of the shell variable
HOSTNAME. This is the network name of the machine.

366

Variables And Constants

Note: The shell actually does provide a way to enforce the immutability of con-
stants, through the use of the declare builtin command with the -r (read-only)
option. Had we assigned TITLE this way:

declare -r TITLE="Page Title"

the shell would prevent any subsequent assignment to TITLE. This feature is rarely
used, but it exists for very formal scripts.

Assigning Values To Variables And Constants

Here is where our knowledge of expansion really starts to pay off. As we have seen, vari-
ables are assigned values this way:

variable=value : :
where variable is the name of the variable and value is a string g other pro-
gramming languages, the shell does not care about the daeassigned to a variable;

it treats them all as strings. You can force th 6 ict the assignment to integers

by using the declare command wiNOl ion, h‘?e setting variables as read-

only, this is rarely doni Om .‘ P?)

Note that 1\3@ gn Snt, ther 9% nQpaces between the variable name, the
“, the value heg the value consist of? Anything that we can ex-

@xlﬁo a string: P %\

a=z
b="a string"
c="a string and $b"

Assign the string "z" to variable a.
Embedded spaces must be within quotes.
Other expansions such as variables can be
expanded into the assignment.

Results of a command.

Arithmetic expansion.

Escape sequences such as tabs and newlines.

d=$(1ls -1 foo.txt)
e=3$((5 * 7))
f="\t\ta string\n"

H o H o HHH

Multiple variable assignments may be done on a single line:

a=5 b="a string"

During expansion, variable names may be surrounded by optional curly braces “{}”. This
is useful in cases where a variable name becomes ambiguous due to its surrounding con-

367

Here Documents

mand. There is a third way called a here document or here script. A here document is an
additional form of I/O redirection in which we embed a body of text into our script and
feed it into the standard input of a command. It works like this:

command << token
text
token

where command is the name of command that accepts standard input and token is a string
used to indicate the end of the embedded text. We’ll modify our script to use a here docu-
ment:

#!/bin/bash

Program to output a system information page

CURRENT_TIME=$(date +"%x %r %Z")
TIMESTAMP="Generated $CURRENT_TIME, by $US é.\e C

cat << _EOF_ e
<HTML> NO
<HEAD> ﬁ(Lng] O-‘ 6‘3’(

NG Y>
D (e :ﬁ% </H1>

ESTAMP</P>

TITLE="System Information Report For $HOSTNAME" O u\(

A

</BODY>
</HTML>
EOF

Instead of using echo, our script now uses cat and a here document. The string _ EOF_
(meaning “End Of File,” a common convention) was selected as the token, and marks the
end of the embedded text. Note that the token must appear alone and that there must not
be trailing spaces on the line.

So what’s the advantage of using a here document? It’s mostly the same as echo, except
that, by default, single and double quotes within here documents lose their special mean-
ing to the shell. Here is a command line example:

[me@linuxbox ~]$ foo="some text"
[me@linuxbox ~]$ cat << _EOF_
> $foo

369

26 — Top-Down Design

</HEAD>

<BODY>
<H1>System Information Report For linuxbox</H1>
<P>Generated 03/19/2009 04:02:10 PM EDT, by me</P>

</BODY>
</HTML>

we see that there are some blank lines in our output after the timestamp, but we can’t be
sure of the cause. If we change the functions to include some feedback:

report_uptime () {
echo "Function report_uptime executed."

return
} o u\(
report_disk_space () { \e ‘C :

echo "Function report_disk_space 9{_@‘5@
) return m NO
report_home space W "

echo report_| homA@@executed "
RGO

and run the script again:

[me@linuxbox ~]$ sys_info_page
<HTML>
<HEAD>
<TITLE>System Information Report For linuxbox</TITLE>
</HEAD>
<BODY>
<H1>System Information Report For linuxbox</H1>
<P>Generated 03/20/2009 05:17:26 AM EDT, by me</P>
Function report_uptime executed.
Function report_disk_space executed.
Function report_home_space executed.
</BODY>
</HTML>

378

27 — Flow Control: Branching With if

27 - Flow Control: Branching With if

In the last chapter, we were presented with a problem. How can we make our report-gen-
erator script adapt to the privileges of the user running the script? The solution to this
problem will require us to find a way to “change directions” within our script, based on
the results of a test. In programming terms, we need the program to branch.

Let’s consider a simple example of logic expressed in pseudocode, a simulation of a com-
puter language intended for human consumption: \4

X=5
If X =5, then: Sa\e ‘CO .

Othermssiy e NO‘—G“ 6‘3’(
Say)@\dﬂjecﬁ‘ to 5.” AOB O

gns is an exampleVof a branch. Based on the condition, “Does X = 5?” do one thing,
“Say X equals 5,” otherwise do another thing, “Say X is not equal to 5.”

if

Using the shell, we can code the logic above as follows:

X=5

if [$x -eq 5]; then

echo "x equals 5."
else

echo "x does not equal 5."
fi

or we can enter it directly at the command line (slightly shortened):

381

Exit Status

In this example, we execute the 1S command twice. The first time, the command exe-
cutes successfully. If we display the value of the parameter $?, we see that it is zero. We
execute the 1s command a second time, producing an error, and examine the parameter
$? again. This time it contains a 2, indicating that the command encountered an error.
Some commands use different exit status values to provide diagnostics for errors, while
many commands simply exit with a value of one when they fail. Man pages often include
a section entitled “Exit Status,” describing what codes are used. However, a zero always
indicates success.

The shell provides two extremely simple builtin commands that do nothing except termi-
nate with either a zero or one exit status. The true command always executes success-
fully and the false command always executes unsuccessfully:

[me@linuxbox ~]$ true
[me@linuxbox ~]$ echo $?
0

[me@linuxbox ~]$ false U\(
[me@linuxbox ~]1$ echo $? CO .
! c:.‘a.\e‘

\.‘G“

We can use these com and@ e 1f st@ teﬁn 11(5 What the 1f statement
really does is eval aje % ess or fﬁn’? of

‘: [ﬁs;lnuxbox ~ e; then echo "It's true."; fi

It's true.
[me@linuxbox ~]$ if false; then echo "It's true."; fi
[me@linuxbox ~]$%$

The command echo "It's true." is executed when the command following if exe-
cutes successfully, and is not executed when the command following if does not execute
successfully. If a list of commands follows 1T, the last command in the list is evaluated:

[me@linuxbox ~]$ if false; true; then echo "It's true."; fi
It's true.

[me@linuxbox ~]$ if true; false; then echo "It's true."; fi
[me@linuxbox ~]$

383

27 — Flow Control: Branching With if

script this way:

#!/bin/bash

test-integer2: evaluate the value of an integer.
INT=-5

if [["$INT" =~ A-?[0-9]+$]]; then
if [$INT -eq 0]; then
echo "INT is zero."
else
if [$INT -1t @]; then
echo "INT is negative."

else
echo "INT is positive."
fi
if [$((INT % 2)) -eq @]; then
echo "INT is even." U\(
else CO .

. o echo "INT is odd." Otesa\e .

else _ _ N 1
2;2: ;INT ‘\1se m arﬁv@m >&2 A. O“ 63

By applying the regular e>¥ression, we are able to limit the value of INT to only strings
that begin with an optional minus sign, followed by one or more numerals. This expres-
sion also eliminates the possibility of empty values.

Another added feature of [[]] is that the == operator supports pattern matching the
same way pathname expansion does. For example:

fi

[me@linuxbox ~]$ FILE=foo.bar

[me@linuxbox ~]$ if [[$FILE == foo.*]]; then
> echo "$FILE matches pattern 'foo.*'"

> fi

foo.bar matches pattern 'foo.*'

This makes [[]] useful for evaluating file and pathnames.

390

27 — Flow Control: Branching With if

nary command, and it deals only with integers, it is able to recognize variables by name
and does not require expansion to be performed. We’ll discuss (()) and the related
arithmetic expansion further in Chapter 34.

Combining Expressions

It’s also possible to combine expressions to create more complex evaluations. Expres-
sions are combined by using logical operators. We saw these in Chapter 17, when we
learned about the find command. There are three logical operations for test and
[[11.They are AND, OR and NOT. test and [[]] use different operators to repre-

sent these operations :

Table 27-4: Logical Operators

Operation test [[11and (())
AND -a &&

OR -0 CO .u\k

NOT ! tesa'\
Here’s an example of an AND_?‘G@ §10w1 l%%‘]mes if an integer is
within a range of Val Al

#!/bEn/bash F ada

test-integer3: determine if an integer is within a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["$INT" =~ A-?[0-9]+$]]; then
if [[INT -ge MIN_VAL && INT -le MAX_VAL]]; then
echo "$INT is within $MIN_VAL to $MAX_VAL."
else
echo "$INT is out of range."
fi
else
echo "INT is not an integer." >&2
exit 1
fi

392

28 — Reading Keyboard Input

read — Read Values From Standard Input

The read builtin command is used to read a single line of standard input. This command
can be used to read keyboard input or, when redirection is employed, a line of data from a
file. The command has the following syntax:

read [-options] [variable...]
where options is one or more of the available options listed below and variable is the

name of one or more variables used to hold the input value. If no variable name is sup-
plied, the shell variable REPLY contains the line of data.

Basically, read assigns fields from standard input to the specified variables. If we mod-
ify our integer evaluation script to use read, it might look like this:

#!/bin/bash

read-integer: evaluate the value of an integer. u\(

cO-

echo -n "Please enter an integer -> "

read int \e *
e es?
' [[1f$[ln§1nt ~—eq 0[0];]{%6‘“ NO _‘ 6‘3’(

echo "$3i
else
e\,[\ t —lt 0 a
P(ech egatlve "
else
echo "$int is positive."
fi

if [$((int % 2)) -eq 0]; then
echo "$int is even."

else
echo "$int is odd."
fi
fi
else
echo "Input value is not an integer." >&2
exit 1
fi

We use echo with the -n option (which suppresses the trailing newline on output) to
display a prompt, and then use read to input a value for the variable int. Running this
script results in this:

398

28 — Reading Keyboard Input

It's possible to supply the user with a default response using the -e and -1 options to-
gether:

#!/bin/bash
read-default: supply a default value if user presses Enter key.

read -e -p "What is your user name? " -i $USER
echo "You answered: '$REPLY'"

In this script, we prompt the user to enter his/her user name and use the environment vari-
able USER to provide a default value. When the script is run it displays the default string
and if the user simply presses the Enter key, read will assign the default string to the
REPLY variable.

[me@linuxbox ~]$ read-default O ‘U
wWhat is your user name? me a\e _C

You answered: 'me' 5
N (53T
;\Ilz(fm@ ge&&%%j fg@m@ﬁ%}?ingfmvided to read. As we have

seen, ans that mul parated by one or more spaces become separate
items on the input line, and are assigned to separate variables by read. This behavior is
configured by a shell variable named IFS (for Internal Field Separator). The default
value of IFS contains a space, a tab, and a newline character, each of which will separate
items from one another.

We can adjust the value of IFS to control the separation of fields input to read. For ex-
ample, the /etc/passwd file contains lines of data that use the colon character as a
field separator. By changing the value of IFS to a single colon, we can use read to input
the contents of /etc/passwd and successfully separate fields into different variables.
Here we have a script that does just that:

#!/bin/bash
read-ifs: read fields from a file

FILE=/etc/passwd

402

Syntactic Errors

#!/bin/bash
trouble: script to demonstrate common errors
number=

if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi

Running the script with this change results in the output:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 7: [: =: unary operator expected
Number is not equal to 1. \(

We get this rather cryptic error message follo e%) aufput of the second echo
command. The problem is the expan er Vanrble within the test com-

mand. When the comm%nd Om

L?%ge

undergoes expansion with number being empty, the result is this:

[=11

which is invalid and the error is generated. The = operator is a binary operator (it requires
a value on each side), but the first value is missing, so the test command expects a
unary operator (such as - z) instead. Further, since the test failed (because of the error),
the 1f command receives a non-zero exit code and acts accordingly, and the second
echo command is executed.

This problem can be corrected by adding quotes around the first argument in the test
command:

["$number" = 1]

419

31 — Flow Control: Branching With case

terminate each action, so now we can do this:

#!/bin/bash
case4-2: test a character

read -n 1 -p "Type a character > "

echo

case $REPLY in
[[:upper:]]) echo "'$REPLY' is upper case." ;;&
[[:lower:]]) echo "'$REPLY' is lower case." ;;&
[[:alpha:]]) echo "'$REPLY' is alphabetic." ;;&
[[:digit:]]1) echo "'$REPLY' is a digit." ;;&
[[:graph:]]) echo "'$REPLY' is a visible character." ;;&
[[:punct:]]) echo "'$REPLY' is a punctuation symbol." ;;&
[[:space:]]) echo "'$REPLY' is a whitespace character." ;;&
[[:xdigit:]]) echo "'S$REPLY' is a hexadecimal digit." ;;&

esac \\)\‘L.
e.CO:

sa\e:
te 6/"
[me@linuxbox ~]$ case4- %
e (o g ol

@E e
a' ?sa hexadéglggl?ﬁg

The addition of the ";;&" syntax allows case to continue on to the next test rather than
simply terminating.

When we run this script, we get this:

Summing Up

The case command is a handy addition to our bag of programming tricks. As we will
see in the next chapter, it’s the perfect tool for handling certain types of problems.

Further Reading

e The Bash Reference Manual section on Conditional Constructs describes the
case command in detail:
http://tiswww.case.edu/php/chet/bash/bashref.htmI#SEC21

e The Advanced Bash-Scripting Guide provides further examples of case applica-

434

Further Reading

tions:
http://tldp.org/LDP/abs/html/testbranch.html

435

32 — Positional Parameters

interactive=
filename=

while [[-n $1]]; do
case $1 in
-f | --file) shift
filename=$1

rrs

-i | --interactive) interactive=1
rrs
-h | --help) usage
exit
i
*) usage >&2
exit 1
i
esac
shift

N uk

interactive mode

if [[-n $interactive]]; then es

while true; do "

readl-p "Enter name mglle "efi q\e

WAL o flxa§}hen XAs &ver%wr%;.tle? [y/n/q] > "
\,\éAW$REPLY i 'Aa*(

N o

Q?é§ echo "Program terminated."

exit

Py

rrs
*) continue
-
esac
fi
done
fi

output html page

if [[-n $filename]]; then
if touch $filename && [[-f $filename]]; then
write_html_page > $filename
else
echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1
fi
else

448

for: Traditional Shell Form

The really powerful feature of for is the number of interesting ways we can create the
list of words. For example, through brace expansion:

[me@linuxbox ~]$ for i in {A..D}; do echo $i; done

OO w>

or pathname expansion:

[me@linuxbox ~]$ for i in distros*.txt; do echo $i; done
distros-by-date.txt

distros-dates.txt

distros-key-names.txt

distros-key-vernums.txt u\(
distros-names.txt

distros.txt a\e ‘CO :
distros-vernums. txt tes

dist
istros-versions. txt f1—7
g ot 22

orconnnand

\ #!/bin/bash
longest-word : find longest string in a file

while [[-n $1]]; do
if [[-r $1]]; then
max_word=
max_len=0
for i in $(strings $1); do
len=$(echo $i | wc -c)
if ((len > max_len)); then
max_len=%$len
max_word=$1i
fi
done
echo "$1: '$max _word' ($max_len characters)"
fi
shift
done

451

34 — Strings And Numbers

max_len=$len
max_word=%$j
fi
done
echo "$i: '$max_word' ($max_len characters)"
fi
shift
done

Next, we will compare the efficiency of the two versions by using the t ime command:

[me@linuxbox ~]$ time longest-word2 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38
characters)

real OGm3.618s

user Omil.544s \(
sys 0Oml.768s O u
[me@linuxbox ~]$ time longest-word3 dirlist-usr- blnk
dirlist-usr-bin.txt: 'scrollkeeper-get-ex e% '_Llst' (38
characters) klé

oo g&yO®
sys 0mO.008s 3 e\N 86
The ortuinal version of theen@'t es 3.618 seconds to scan the text file, while the new

version, using parameter expansion, takes only 0.06 seconds—a very significant im-
provement.

real Om0O.060s

Case Conversion

Recent versions of bash have support for upper/lowercase conversion of strings. bash
has four parameter expansions and two options to the declare command to support it.

So what is case conversion good for? Aside from the obvious aesthetic value, it has an
important role in programming. Let's consider the case of a database look-up. Imagine
that a user has entered a string into a data input field that we want to look up in a data-
base. It's possible the user will enter the value in all uppercase letters or lowercase letters
or a combination of both. We certainly don't want to populate our database with every
possible permutation of upper and lower case spellings. What to do?

A common approach to this problem is to normalize the user's input. That is, convert it
into a standardized form before we attempt the database look-up. We can do this by con-

462

34 — Strings And Numbers

<< Left bitwise shift. Shift all the bits in a number to the left.

>> Right bitwise shift. Shift all the bits in a number to the right.

& Bitwise AND. Perform an AND operation on all the bits in two
numbers.

| Bitwise OR. Perform an OR operation on all the bits in two
numbers.

A Bitwise XOR. Perform an exclusive OR operation on all the
bits in two numbers.

Note that there are also corresponding assignment operators (for example, <<=) for all
but bitwise negation.

Here we will demonstrate producing a list of powers of 2, using the left bitwise shift op-

erator: K
0.V
:Eme@linuxbox ~1$ for ((iz0;i<8;++i)); do 5{@5@‘_&% (d:ne
2 oM WO ‘5?31
AQ4 O

Logic

As we discovered in Chapter 27, the (()) compound command supports a variety of
comparison operators. There are a few more that can be used to evaluate logic. Here is
the complete list:

Table 34-6: Comparison Operators

Operator Description

<= Less than or equal to
>= Greater than or equal to
< Less than

> Greater than

470

Arithmetic Evaluation And Expansion

== Equal to

I= Not equal to
&& Logical AND
| | Logical OR

expril?expr2:expr3 Comparison (ternary) operator. If expression expr1
evaluates to be non-zero (arithmetic true) then expr2,
else expr3.

When used for logical operations, expressions follow the rules of arithmetic logic; that is,
expressions that evaluate as zero are considered false, while non-zero expressions are
considered true. The (()) compound command maps the results into the shell’s normal
exit codes:

Y
[me@linuxbox ~]$ if ((1)); then echo "true" e @0f\a\r§e"; fi
true
[me@linuxbox ~]$ if ((0)); then ech aSlse echo "false"; fi
false

1\
The strangew 1&‘ Qperat r Q1 ry operator. This operator (which is
ne in the gA-gmg language) performs a standalone logical test.
é used as a_ n/else statement. It acts on three arithmetic expressions
strings won’t wosﬁn if"the first expression is true (or non-zero) the second expres-
sion is performed. Otherwise, the third expression is performed. We can try this on the
command line:

[me@linuxbox ~]$ a=6
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a

1

[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a

0

Here we see a ternary operator in action. This example implements a toggle. Each time
the operator is performed, the value of the variable a switches from zero to one or vice

versd.

Please note that performing assignment within the expressions is not straightforward.

471

35 — Arrays

[5]=Fri [6]=Sat)

Accessing Array Elements

So what are arrays good for? Just as many data-management tasks can be performed with
a spreadsheet program, many programming tasks can be performed with arrays.

Let’s consider a simple data-gathering and presentation example. We will construct a
script that examines the modification times of the files in a specified directory. From this
data, our script will output a table showing at what hour of the day the files were last
modified. Such a script could be used to determine when a system is most active. This
script, called hours, produces this result:

[me@linuxbox ~1$ hours .

Hour Files Hour Files ')\(

[oNo]

w N
[N SNoNoN O]

[N

(&)

\I

07 e
s Y% ¢ pad
106 2 22 0

11 5 23 0

Total files = 80

We execute the hours program, specifying the current directory as the target. It pro-
duces a table showing, for each hour of the day (0-23), how many files were last modi-
fied. The code to produce this is as follows:

#!/bin/bash

hours : script to count files by modification time

usage () {
echo "usage: $(basename $0) directory" >&2
}

480

35 — Arrays

[me@linuxbox ~]$ foo=(a b c)
[me@linuxbox ~]$ echo ${foo[@]}
abc

[me@linuxbox ~]$ foo+=(d e f)
[me@linuxbox ~]$ echo ${foo[@]}
abcdef

Sorting An Array

Just as with spreadsheets, it is often necessary to sort the values in a column of data. The
shell has no direct way of doing this, but it's not hard to do with a little coding:

#!/bin/bash

array-sort : Sort an array

a=(f e d c b a) (:;
echo "Original array: ${a[@]}" sa\e
a_sorted=($(for i in "${a[@]}"; d 061"6 L?))

echo "Sorted array: ${a sort

When executed, the S@N}Ioduces this: 08 O
‘P(e\lﬂ paQC & o

[me@linuxbox ~]$ arra sort
Original array: f ed c b a
Sorted array: abcdef

The script operates by copying the contents of the original array (@) into a second array
(a_sorted) with a tricky piece of command substitution. This basic technique can be
used to perform many kinds of operations on the array by changing the design of the
pipeline.

Deleting An Array

To delete an array, use the unset command:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
abcdef

484

Group Commands And Subshells

array[@]}" expansion which expands into the list of array indexes rather than the list of
array elements.

Process Substitution

While they look similar and can both be used to combine streams for redirection, there is
an important difference between group commands and subshells. Whereas a group com-
mand executes all of its commands in the current shell, a subshell (as the name suggests)
executes its commands in a child copy of the current shell. This means that the environ-
ment is copied and given to a new instance of the shell. When the subshell exits, the copy
of the environment is lost, so any changes made to the subshell’s environment (including
variable assignment) is lost as well. Therefore, in most cases, unless a script requires a
subshell, group commands are preferable to subshells. Group commands are both faster
and require less memory.

We saw an example of the subshell environment problem in Chapter 28, when we discov-
ered that a read command in a pipeline does not work as we might intuiti %Xpect. To
recap, if we construct a pipeline like this: CO ‘\\S

echo "foo" | read NO‘@DU‘—
echo $REPLY 1
C

The m;@\ EPLY varj bléms empty because the read command is exe-
a‘subshell i

@t f REPLY is destroyed when the subshell terminates.

Because commands*in pipelines are always executed in subshells, any command that as-
signs variables will encounter this issue. Fortunately, the shell provides an exotic form of
expansion called process substitution that can be used to work around this problem.

Process substitution is expressed in two ways:
For processes that produce standard output:
<(list)

or, for processes that intake standard input:
>(1list)

where list is a list of commands.

To solve our problem with read, we can employ process substitution like this:

read < <(echo "foo")
echo $REPLY

491

Traps

for 1 in {1..5}; do
echo "Iteration $i of 5"
sleep 5

done

This script features two trap commands, one for each signal. Each trap, in turn, speci-
fies a shell function to be executed when the particular signal is received. Note the inclu-
sion of an exit command in each of the signal-handling functions. Without an exit,
the script would continue after completing the function.

When the user presses Ctrl-c during the execution of this script, the results look like
this:

[me@linuxbox ~]$ trap-demo2
Iteration 1 of 5 \(
Iteration 2 of 5 O u
Script interrupted. \e C *

P e | .

Tempor? |I&J
sig

P fl?the script @r to hold mtermedlate results during execution. There is
something of an art to naming temporary files. Traditionally, programs on Unix-
like systems create their temporary files in the /tmp directory, a shared directory
intended for such files. However, since the directory is shared, this poses certain
security concerns, particularly for programs running with superuser privileges.
Aside from the obvious step of setting proper permissions for files exposed to all
users of the system, it is important to give temporary files non-predictable file-
names. This avoids an exploit known as a temp race attack. One way to create a

non-predictable (but still descriptive) name is to do something like this:
tempfile=/tmp/$(basename $0).$$5.$RANDOM

This will create a filename consisting of the program’s name, followed by its
process ID (PID), followed by a random integer. Note, however, that the $RAN -
DOM shell variable only returns a value in the range of 1-32767, which is not a
very large range in computer terms, so a single instance of the variable is not suf-
ficient to overcome a determined attacker.

495

36 — Exotica

A better way is to use the mktemp program (not to be confused with the mktemp
standard library function) to both name and create the temporary file. The mk -
temp program accepts a template as an argument that is used to build the file-
name. The template should include a series of “X” characters, which are replaced
by a corresponding number of random letters and numbers. The longer the series

of “X” characters, the longer the series of random characters. Here is an example:
tempfile=$(mktemp /tmp/foobar.$$.XXXXXXXXXX)

This creates a temporary file and assigns its name to the variable tempfile.
The “X” characters in the template are replaced with random letters and numbers
so that the final filename (which, in this example, also includes the expanded

value of the special parameter $$ to obtain the PID) might be something like:
/tmp/foobar.6593.U0ZuvM6654

For scripts that are executed by regular users, it may be wise to avoid the use of
the /tmp directory and create a directory for temporary files within the user’s

home directory, with a line of code such as this: u\(

[[-d $HOME/tmp]] || mkdir $HOME/tmp
aleC
reS

Asynchronous Execu“lom -‘ 53
It is sometrmes perform more%a%g at the same time. We have seen
how ratmﬂm east multltaskmg if not multiuser as well.

Scripts\can’be constructed n a multitasking fashion.

Usually this involves launching a script that, in turn, launches one or more child scripts
that perform an additional task while the parent script continues to run. However, when a
series of scripts runs this way, there can be problems keeping the parent and child coordi-
nated. That is, what if the parent or child is dependent on the other, and one script must
wait for the other to finish its task before finishing its own?

bash has a builtin command to help manage asynchronous execution such as this. The
wait command causes a parent script to pause until a specified process (i.e., the child
script) finishes.

wait

We will demonstrate the wait command first. To do this, we will need two scripts, a par-
ent script:

496

36 — Exotica

e The Advanced Bash-Scripting Guide also has a discussion of process substitution:
http://tldp.org/L.DP/abs/html/process-sub.html

e Linux Journal has two good articles on named pipes. The first, from September
1997:
http://www.linuxjournal.com/article/2156

e and the second, from March 2009:

http://www.linuxjournal.com/content/using-named-pipes-fifos-bash

500

Index

Index

A

a2ps COMMAN........cccverrerreererrernreeereessnreeseeens 333
absolute pathnames...........ccccoevvevverveerenceeencreeennenns 9
alias command..........cccooeeuvvvvvriieeniinn. 50, 126
ALTASES...eveei e 42,50, 124
American National Standards Institute (see ANSI)
.. 160
American Standard Code for Information
Interchange (see ASCII)......cocererereneneenveneeneennen. 17
Y1 (ol 110 SR 247
anonymous FTP servers........cccccceeveeeeevvunnns 2

ANSI escape codes............. . 6 .\..%60, 164
ANSLSYS....piiicar 1. (................... ”

Apache wgb NN 5 1
@:ﬂ%ﬁfﬁgpa N 169

apt-get command.........%.c.oeeverirceeneeiereeeeens 168p.
aptitude command............cecverereeererreenieeniee e, 168
arChiving......cooceeeererieenenieneeec et 230
arithmetic expansion.............. 70, 75, 367, 456, 464
arithmetic expressions.................. 70, 453, 464, 467
arithmetic operators...........ccecueeevveeenveenneenn. 70, 465
arithmetic truth testS.......coeevvveeevivvvnreeeeennnn. 391, 464
AITAYS. ¢ uvenveenrerreeeerseeeesseesesseessesseessesseessesseessessseesnnes
append values to the end...........c.ccccverrveennne 483
assSigning values........c.cceevevveeeerieneenenneenenns 479
ASSOCIALIVE..evveviereeeeeeieeeeeeeerriieeeeeeeeennens 485, 488
CTEALING. .eeeeuereeeureeerieeereeeeerieeeesireeeeeesanrreeees 478
deleting.......oceeeeverienienieneeeeee e 484
determine number of elements..................... 482
finding used subscripts.......cccoeeveveerrrernnennne 483
INAEX..eeiieieieteereeeeee et 478
multidimensional..........cceccveevereeceenersneeennen. 478
reading variables into...........ccceevveerereernnnn. 400
SOTTIMG. ..eevverreenireereeneeereeeeeeereesreereesnneees 484
SUDSCIIPL. ..ceveeveteerereeieeee e 478
two-dimensional........c.cceeveeevieeneeniieeeeeninnn. 478

ASCIL...ooovveeereeeeeerrenn. 77,81, 221, 251, 263, 333
bell character...........coooueeeeieieeeiiiieeeeeeeeeieaes 157
CaITIAGE TELUIML...eeueeeneeereerareeeeenreeeeennreeeens 267
collation order........ccceeeveeeeeeennnn... 251, 253, 387
CONIOl COAES...coovveeeeieeeeeeeeeennnn. 77,251, 327
groff output driver.........ccceecvvviegeeessvernneennne 320
linefeed character...............q... A V S 267
null character......

printable f@ct
ﬁa eeeeeeeeeeeeseee e 17
‘;@ mmand, 299

ssemblege. ./ ’(... 341
ass&bl o) TSRS 341
@ MET OPETatorsS.....cceevuveerrreerreeeeereeeesaneeees 467

ASSOCIALIVE AITAYS...ccuverrrerreerirreeennrneeesnnnes 485, 488
asynchronous execution...........cceceeeecveeseveenenenns 496
audio CDS...c.eevvieieiieienieeieeeereeeeee e 180, 191
AWK programming language.................... 299, 473
B
back references..........cccceevenenieninncencnenns 263, 294p.
backslash escape sequences...........ccoeceeeeeveeeennnne 78
backslash-escaped special characters................. 156
backups, incremental..........c..ccccevieiiniieneniiennenn. 234
basename command........c..coceeererenienennienniennne. 440
DASH. e 2,124
ITIAT PAGEL...eeeeureerrureeenreeeasrreeessaanunnreeeeeesesaannns 48
basic regular expressions 254, 262p., 292, 296, 306
bc command........ccceceereevienienenieneneeeeee e 473
Berkeley Software Distribution.............ccccceueen. 331
bg command..........coceeveriiiiniinieee 116
binary....oceveeienenieeeeeeeece, 93, 97, 341, 465
Dit MasK.....couevieirenieereree e 96
Dit OPerators.......cecveeveeierreeieeeeeieeeiee e 469
BoOUIME, StEVEe......ueeeeeiiiiiieeeeieeeeeeeeeeeeee e 2,6
brace exXpansion..........ccceeeeveeeerervenneens 71, 75, 451
branching........cceceeveeieiinsieniniineesencesenceee 381

Free Software Foundation..........ccccceevuueenn... Xix, xxi

fsck command...........cooevverierienienienieeeee s 189

ftp command..........ccccceeveeennenn. 199, 207, 342, 370

| N Y S W <) N 200, 370

FUNCNAME variable........cccccovvveveeeeieenreeennnen. 441

function Statement...........coceeververeeriereeneeneeneennnens 374

G

BOCuutteeureeeareeeernteesenreeesureeseneeesneeeentee s nnnnnneeeeas 34

gedit command..........cceceveerrerieneniieeeneenne 114, 131

genisoimage command.............cceeeverreerverreesvennens 191

GENLO0...c.utiiiieeieiiierreeteere et 166

getopts comMmand.........coceeeeveeieneeniieenneeeneenns 449

GhOSESCIIPL. ettt 329

B 89

global variables..........ccccooerieniiiininieeieeeee 376

GlODDING....eeeiiiiieieeeeeeeee e 26

GNOME.......cooeviienienene 2,27, 40, 95, 131, 208

gnome-terminal.........ccceceeeerieeeerieereeseeeeeereeeeeens 2

GNU binutils package.........ccceevrvververrerceesreeennen. 452

GNU C Compiler.......ccceverveenennienenieeeneeeneeen. 342

GNU coreutils package............... 45, 48p., 279, 303

GNU findutils package.......cccceoeevvereeneennennsee 2¢5

GNU Project.......... 14, xix, xxi, 225, 30
info command...............

GNU/LINUX..cververreenpc fore?

graphlcal usi'

roup commands

BIOUPS. .c.vevirerrertentenrenseteteseeeneeneeeeseeseesessesseennes
effective group ID.......cccocevevrvieriencienieeieenen. 98
=2 TSP 89
primary group ID......cccccoevirviinvienniinienieeene 89
L1121 O PS 98

GUL.ooeiiiiiieieeeeeeeee 3, xvii, 27, 40, 79, 95, 127

gunzip command..........cccceeveeneriienenieenieenieeennen 227

SZip COMMANM....cc.eervereereeieneeieneenieeeneeens 50, 227

H

hard disks......ccceeeevienienienineneenee e 176

hard lnks........cooveveeeiiiieeeeeeeeeeeeeeee, 24, 33, 37
CTEALINE..ceuveeurerreerteereeeteereeetesereesenreeeeenne 37
LISHNG. .ottt 38

head command........c..ccceeevenennnnnnnieineeeeee 63

header files.......ccccoeveveneneniicerccece 345

hello world program..........ccccccevveeevervecvenvesrennns 355

help command..........ccceceevvirerrieneereneeeeee e 44

here documents............cceeeveneeserniienneenneeenne. 369

here Strings........ccoceevereevieneeneneeresteree e 404
hexadecimal.........ccooovvvvveiiiiiiiiiiiiiii, 93, 465
hidden fileS........ovvvveeveeeeiiiieieeeeeieeeeeeeeeeees 11, 69
hierarchical directory structure.........c..ccecceeveenueene 7
high-level programming languages.................... 341
Y 0] oy 2

EXPANSION...ceuriirienieeiieeeeerreeereesreesreeeaas 84, 86

SEArChiNg.....coveeveereeieriereeeeeeeeee e, 84
history command.........ccccceceeveriienernenenrieneeieenne 84
home directories.........ccoceeveriereneeneneenenee e 21

TOOL ACCOUNL.....ceuiiuiiniiiiiniiniireireeee e 22

/tC/PASSWA..c.evieeeeeeieeierieieeee e 90
home directory..........cccevvrrurennee. 8, 11, 69, 100, 126
HOME variable.........cccooereienininieiineecnecnene 126
hostname..........coceecerieieninniniiceeeeee e 157
HTML.....coovvveenenne 265, 299, 319, 361, 371, 373
Hypertext Markup Language..........c.cccceeueeenen. 265

... 183
‘n:é% command..........oo.one.... 129, 418, 429
vari - ’Z; .. 402
UEST....ooiieineeeeeeieeene 196
backups......ccocevervenieieeeeee 234
flles ... 49
INEE ettt 108
INIE SCIIPLS..vteurereeenieereeeee ettt 108
INOAES. . .eieeeiireeeieeetete ettt et 37
INSTALL...oootititeireeeeeeeneeresese et 344
installation Wizard.........ccoceeveverrieneenenieenneeee 167
INEEBETS.c.uuveeeeereeeireeeereeeeireeeieeesereeesnreesaneeeeeeaeannnn
ArithmetiC....cuvvevveeeeeeeeeeeeeeeee e 70, 473
AIVISION...cccuveeeeieeceeee e 71, 466
EXPIESSIONS. ...eeeeurrreeureerrreernrieeeeesenneeeeeeeeens 388
INTETACHIVILY .veeveerreertenieenteeseeeee e e e eieeee e 397
Internal Field Separator..........cccccoceveevienenuennen. 402
interpreted 1anguages..........ccoeeevvereeenveenireennnne 341
interpreted PrOGrams..........ecceeveervereeereeersveeennnes 342
BT 111S) §0) < (<) VPSP POPPPUUPPNN 341
IS0 IMAEES.c.uveerureeeeeeieeitenteereesreesieesreesaeeeaee 191p.
1SO9660.....c.eeeeeienreeienieeieneeenee e 180, 192
J
JOD CONLTOL......eieiiiirieieeieeeeeeee e 115
JOD NUMDETS.....cccvieeieiieieceeeee e 115
0] 1) 51T SRS 116
join cOMMANd.......cccveerreerrerrienierieeneeesieesaeenes 281

Index

Joliet eXtenSIiONS........cceevvereereereenieneeneeerieeeees 192 Linux Filesystem Hierarchy Standard...19, 24, 358
JOY, Bill.eeiiiiieieeeteee e 137 Linux kernel......xvi, xixp., 46, 108, 118, 174, 183,
287, 350
device drivVersS.......coceeeeeeceeeieeeeeeiieeeeecreeens 174
K literal characters...........cceeeeeeeeeereecceeecreeeeeeneen. 245
kate command...........ooovvuviiniiinisnniiissiiiinns 131 LIVE CDS.eeeeeeeeeeeeeeeeeee e Xix
KDE. oo, 2,27, 40, 95, 131, 208 In command..........ccoovvuvieiiiiiiiiieiceeeeeeeen 33, 37
kedit COMMANG. ... 131 local Variables............coeveerervereieireniereineniennnns 376
kernel...xvi, xixp., 46, 108, 118, 174, 183, 287,350 1gcale.ooooooovvevverereereeeee 251, 253, 289, 387
k.ey <) [(PR 271 locale COMMAN ..o 253
Kill cOMmMANd...ovvvvvvvvvvvvvvvvniviesininniene 117 10CAIN0SL.ocveveerecieieee e 203
k}lllall COMMANG.....coiriririneneeieee e 120 10CAtE COMIMAN..eneeeoeeeeeeeoeeeeeeeeeenne 209, 261
Killing teXt...veeveereeeeereeeeerieceeie et eee e eeee e 80 10GICAL ITOTS..ovvvveoreeeereeeeeeeeeeeeeeseeeeeeeeseeseeee 420
Knuth, Donald........ooovveeeeeeiieeeeeeeeeeeeeeeeaan 318 logical operations 392
KONQUETOT.....cvvvviiiiiiis 27,95, 208 10giCal OPETALOTS.cveeeveeecrrecrerecsererserenseaeaenes 214
KONSOIE....c..oviiiieieietcceececteee e 2 logical relationships.........ccccoeeeveveveveneennne. 214,218
kwrite Command.......cc.cccessesrerrvienennsanee. 114,131 10gIN PrOMPL........cuveeecereereeeieeeeseeeeaevenaesesenes 5,201
login shell.........cooceviiiiniininienieeeee 90, 99, 127
L 1oNg OPLIONS....c.vevieeeeeieeeeeeeeeee e e 14
LANG Variable.......ooooccerooreerresseen 126,251,253 100PDACK INErface...ooomcreeiincressses e
1655 COMMAN..evrrrreverrresreerreerssens 17,60,238, 261 10OPING.ccvccriiinr sy O Q ------- 409
Iftp command...........ccoooveveinininiiinii 202 100PS..ovsvvroe \642 469, 486, 492
LEDEATIES. ... 341 lossles ﬁ‘@» """"""""""""""""""" 227
LibreOffice WIiter........c.ccovvevveevveeeeecieee e, xXXi ﬁ" """""""""""""""""""""" 227
line continuation character..............c.......... ase to UPP% EISION....oovvennnnnnnnee. 463
line editors. ..o _‘(Ip comrn ... 332
line-continuation Charatt W My pl .. 337
linker.......... \, @86 rnand..(i ... 331
PIrm COMMANA.....ccevveeeriierriieeniieeeeeeeiieeeeeeeen. 338
Eglljlsl‘lgP("""""""""""""""""""""""""""""""""""""" ag """""" Ipstat COMMAN..........c.oovveveveeierrerereeerererereeeeenns 336
BIrOKeN......coviieeeee e 39 IS COMMANG. . 8,13
CIEALNE...coviererrierreeeeete ettt e 33 long fOrmat.....oceesvvssssesssssssssinsssssssnnn 16
BT, oo eeeee e 24,33 viewing file attributes......cooooovveecsvvvescssnnee 90
SYMDBOLIC..c.ueeierieienieieeeneeeeeeiee e 23, 34 Lukyanov, AlEXander.........oouevessmmmmmsssseenens 202
Linux COMMUNItY....ccccoeerriieernrieeeiieeenieeeeieeeee 166 LVM (Logical Volume Manager).............. 176,179
Linux distributions...........cccoeeeeveeeeieececcnnnnenn.. 166
CentOS......ooeiieeieeeeeeceee e 167, 336 M
Deblan """" 166p., 340 machine language............oceeveerreerieerierenrenennennn 340
Fedorg """""""""""""""""""" xix, 89, 167, 336 MAaiNteNnanCe.veeveeeveeeenennn. 358, 362, 364, 372
Foresight........ccoecvveevieeieeeeeceeee e 166 make command......oo 347
GO0 o 166 Makefile....mvrrrmrevrrresnererrsssnnereessnnseeeesssssssnnee 347
LI\ZHSICJIIF_E """""""""""""""""""""""""""""""" }g; man COMMANG..........ccooveerrrrierereeeerereresenenenes 45
ANALIVA v INAN PAZES.cvvevrereereereeresreeressessessessessessessesesees 45, 319
gei?(r;SgngEsystems """""""""""""""" XIX, 12(73 markup 1anguages...........c.cceveeeeeeveverenennn. 265, 319
ASHIS SYSTEIIS cccccrcnisiiiie INEITIOTY cv.evveeeerenreeenseresesesesessesessesessesaseessensensesseenes
EE;E:?S;EFP rlseLlnux """""""""""""" }g; a§signeFl t0 each process...........ceveevevevereennne 109
""""""""""""""" displaying free.........cccceevvereevieneeseneenieesneennnd
Slackware..........eevvevevveveeeiieiineeeees RS 166 Resident Set SiZe.n i 111
UbUNTUL xix, 166p., 336 segmentation violation..............c..c.eeveevenn.. 119
XANATOS. v 167 USAZC....cvcverevereeeeresessesesesssessesesessssssssesesesenes 111

VIEWING USAGE....ceoveermrerreenierireeneerireeeeaneeess 121

VIFtUAL .o s 111
menu-driven Programs..........cceeeereeeeereeeesneeennnes 406
TNELA KO .eeuieieeieieeieieeteie ettt 81
IMEtA SEQUETICES.veeeeureeeanreeraureeenreeensneeesaneeenanns 246
MEtaCharacCters......ceeeveeeeveereeereeeeeereesreeeveeeneens 246
MELAdALA.....cevrreeeeeeiireeeeceereereee e e e eeeeeeeees 167, 169
mkdir command..........ccceeveeeieiiiieenreeennennannn. 28, 34
mkfifo command..........cccceeevieiiievieeiieeeeee 498
mkfs command...........ooeeeeveuiiiiiieiiiieeeeenn. 188, 190
mKkisofs command...........cceeveeieeiieniiieeeeenieen. 192
mktemp command............ccceevvererrieneenieneenieennns 496
11000 1S] 1010 1 (PNt 341
mMOdal editOr.....eeccveeeeeeiiecreece e 139
mMonospaced fONtS.........eeevereereeriereeeneeenieneeaenn 329
Moolenaar, Bram.........ccccveveiievuveeeeieiireeeeeennnees 137
MOre COMMANC........cccvreeereeeeeeieeereeeereeeereeeennnen. 19
mount COMMANd.........cooevuvrereereirrverereesinnnnes 178, 192
MOUNE POINLS..cuverrrereeerieeieeneerrreennens 21,178, 180
INOUNEINEG. ..eeveeenreeenreeieenieerreeneessreeeeneeeesssnreeenss 177
IMP3....eeceeeeee ettt ettt et ae e e e 104
MUt -USET SYSTEIMS......vveveeerererienereeereeenereeeeeeenns 88
multiple-choice decisions.........cccceeereenereenennne 429

Eilféiiﬁiﬁﬁa::::::::::::::::::::::::::::::::::::::"88 - 6()"’e
W iy N\,
1C o D%

netstat COmMmMaNd.......c..ceeeerrerverrereernuensueesrecnnens 198
NEtWOTKING.....eeverieiieieieiete e 195
anonymous FTP Servers........ccccoecveeeeruveennn. 200
default route........ccccecerererenerenencrcneeen. 199
Dynamic Host Configuration Protocol (DHCP)
.. 199
encrypted tunnels..........co.eceevierenienenneenneen. 206
examine network settings and statistics....... 198
File Transfer Protocol (FTP)........ccccceeueeueene 199
FIreWalls....c.eeverieeieieieeieeeeee e 196
FTP SEIVETS....oeroeereniereeieieeeenreeeeneeeeneens 200
Local Area Network.......coceeevveneeneeneeneens 199
loopback interface..........cceevevveeereeenieenieenns 199
man in the middle attacks.........ccccccevereernnne 203
TOULETS. ..eeuuveeureemeeereenmeenreeseesareesreesseesannneees 198
secure communication with remote hosts....203
testing if a host is alive.........cccceeceererreennnen. 196
tracing the route to a host.......c.cccceeerveennneen. 197
transferring files........ccccevveevercvereceernieenneens 238
transporting files.........ccevveveeviererceenerceennnen. 199

Virtual Private Network........ccccoeevvveeveieinnnes 206
newline character........coooveeiievviieeeeeiiieeiiieeeeennes 157
NEWIINES.....convviieeeeeeee et 76
INEWS. ..t 344
Nl command..........ooeeveeeeveeieeeeeeeeceeee e 305
nroff command..........cccceveeveiieiiiiiieeceeeeees 318
NUIL Character.......cooovveviiiiiiiieicieeeee e 221
NUMDbET DASeS.......coovviiiiiiiiiiiiiceeee e 465
(0]

(oYl 7: 1 F RN 93, 465, 481
Ogg VOrbis.....ccoeeieieeieeceee e 104
OLD_PWD variable........ccccoeeveveeeiiieeeeeeeeeens 126
OpenOffice.org WTiter.........cccceeeeerieriennen. 18, xxp.
OPEnSSH.....cooviiiiirieeeeneeeeeeeeeeeeee e 203
OPETALOTS. c.evvenveneeneenteneeneeseeseesessessessessessesensensensensenns

ArithmetiC...ovuveeeeeeeeeeeeeeceeeee e 70, 465

ASSIGNIMENL....ccvtirrerreeerierreenriesgeeesrreeeesnreeens 467

binary.....cccceeeeeveeceereeeseegenn A VA 419

comparison..........) U 470

CO‘ 471

terna%. \ -
ownigeeffley N N0 89
5

package management..........ccoceeceeverreereeernueennnne 166
dED.c.niieieee e 166
Debian Style (.deb)......cccevererverviierieeee 167
finding packages.........ccoceeevereeviereenienieieenne 169
high-level tools.........ccoevveviirverereereecee e, 168
installing packages........ccceeeeevverveerseerneeennns 169
low-level tools.......ccccceeveenerveniniieieeeeeene 168
package repositories........ccveeverveecveerrrveennnens 167
Red Hat Style (.1pm)....cccceceeveeeiieeniieennnenne 167
removing packages.......c..ccoceevereenenieennneenn. 170
RPM..coiiiieieeeeeteeeneseee e 166
updating packages.........ceeeeeerverreeernueeennnenns 171

packaging SYStemS........ccvecvereerveeereeeerveennneennnes 166

page description language.................. 265, 320, 328

PAGER variable........ccccccevenveeninneninienieeneens 126

PABETS eeeeeiteeeeieeeerteeeiteeesreeseareeesnbeeeeesannreeeeaeens 19

parameter eXpansion.........ccceeeeeeeuveeeennnne 72,75, 456

parent direCtorY.......cceeevverrerrienreesieneerieeieeerieeeaeees 8

PATENt PIOCESS. ...eeeurerreernreereeneersreeseeesreessreesneess 108

passwd cOoMMANd..........ocereervereereerieereesnneeennnes 106

PASSWOTIAS....ceeveeereeeeeeeereeseeseesseesresseeseesseesssesnsnes 106

paste COMMANA...........cceeverrerrreneereeneesereesennns 280

PATA. .ottt 183

Index

lowercase to uppercase conversion.............. 289
numbering lines........cccocevervennieenneen. 267, 305
PAGINALING....cccveireeeieerieereeeteeieenreee e 313
PASHING.ceeeeiieeiierieetee ettt e 280
preparing for printing...........ccceeeveeeeveeennenns 329
removing duplicate lines...........ccceeevvveeveennen. 61
rendering in PostScript.......ccccceveeveenieenneenne 320
ROT13 encoded........ccoceeveeeeneenieneenieneenaene 290
searching for patterns...........ccceeeereervervennnnnn 62
SOTTINE .eeeveeeneerreeeeenreeneeereesreeaeeseneeee 61, 267
spell checking.........cccoeveevevceeneneeneneeeeeene 299
SUDSHEULING. ...veeeveveeieeeieneeieeiee e 294
substituting tabs for spaces..........ccccceeeveruennne 279
tab-delimited.........cccoevenenennnnencncrceee 278
transliterating characters..........cc.cccceveeeneeen. 288
UniX fOrmMat......coeeeereerenienienieneneeseeseeneene 267
viewing with 1ess........cccceveeveeveniennennnnne. 17, 60

tEXE @dItOTS...covvveeeeeiereeeee e 130, 264, 288
BINACS. . .cverereiiteietetete et saeesane s 131
for writing shell scTipts.......ccccovvervevrercvennene 354
et et 131, 354
INEErACHIVE...c.eeeeeieeieieeeeeeeeeeeee e 288
Kat. et 131 354
Kedit....eeeeeeeieeieeneeeeeeeee e
KWIite. ..o,

P $@ hléﬂiiéﬂiiﬁgp a0C 5

.. 131
VIIMLeeotieeereeereeeeeecee et eveeeteeeree e 131, 354, 359
VISUAL ettt 137

tilde eXpansion.........ccceceevereeneniieensieeeieene 69, 75
tload command...........ccceeeveevieevieenie e 121
top COMMAN......cceerverrereeerererieeeereeeeeeeeeeaeees 111
top-down deSign........ceecveeeeeieneenieeeene e 372
Torvalds, LinUsS.....cocuveeeeieviereeeeeeeeeeeeeeeneeennes xvi, xxi
touch command....................... 222p., 239, 349, 446
tr COMMAN.......ccveeeeiieeeiiieeieeeeiireee e e e e e e 288
traceroute command..............ceevveeeevneeeeireeeeeeennnns 197
ETACING c.veeveerrieeieeeteecte et et st e e et e e e e sreeee e 425
transliterating characters...........cccceeevervveercveeennen. 288
ETAPS -+ eeeveerreenureneeenteerreesteesreesteesreessessseessnnneess 493
troff command...........cccceeveeriienieeieeceee e, 318
true cCommand..........cceeeeveeveeeireeneeeseeeneeeereennnnns 383
TTY ettt e eve et et 109
type COmMMANd........coceeereenuereeneereeneneenreneeenveenns 43
LY PESELLETS. .cenuveeureeneerreenneeeeeireeesesneeeeeanee 318, 328
TZ variable..........ccoovieeiiiieiiieeeieceeeeeee e 127

U

UbUNtU....ceeeieieeneeeeceaenne 89, 102, 166, 250, 357
umask command........oceeveeeeeieeiiieeiieeiiennnennnns 96, 105
umount COMMANQ.......ccueeeererreeneeneeneeneneenennee 181
unalias command.........c.cceceeveereenueensieeenieenneeennne 51
unary operator expected...........ceceeeeruenreernueeennne 419
UNALY OPEIALOTS. .ccuuveeureerneeereenneeeareeneesareessreenseess 465
unexpand command............cceeverevereeerrieennneennnnes 279
unexpected tOKeN........cccvvvererrieerrieeree e 418
uniq command.........cceceevereeereerreesesseesensneens 61, 275
ULIXtciieeieeieeneececeeecececceeece e xvii
Unix System V..ooceeviiriiinieniieneecieeneeeeeieeeenne 331
unix2dos command.........ccceeeveeeerieneeneeensieeenne 267
unset COMMANG......cc.eevuerrerrierierierrieenieeenieeennnes 484
until compound command...........cccceeceereriiennennne 413
181011 0 (0 T0] » TSRS 413
UNzip coMmMand........cceeceeruerreenerrieneereeneesreeennns 236
updatedb command...........cceceeveerieecerenieeeene 211
upstream providers.........ceeveeeeeeeeee Qoo reeernveennns 167
UPHME. ..o u\(........... 373

uptime command..... CO 379
USB flas [&e 176, 190

.. 290
Varla})g 125, 127
COUB N ettt ee e e 89
c anging identity.......ccoeveeveereereerienceereieeseenn 99
changing passwords.........ccccceceeveeveenenneennenne 106
effective user ID.......cccoveevevvvevvcnvveeeeeeennn. 98, 109
home directory........ccceeveevverceenernieneiiereesiene 90
TAENEILY . .eeenveieeieieeeeee e 89
PASSWOIA....eeeereenieieeienieeteneeeeeeeeesaeseenaeeennne 90
setting default permissions........c..ccccccveevueennee. 96
110 1 O 98
SUPEIUSET.c..vveeuveerrervernreessrennnns 90, 92, 98p., 107
/€tC/PASSWA...c.ueieeeieriieienteeeeee e 90
/etC/ShadOW.....ccoveieiieieeicciecccee e 90

\%
validating input...........ccceevveveeeeeneeecieeseee e, 404
VariableS.....oooveeeeeeeiieieeeeeeeeeeeeeee e 72, 364, 456
assigning values........ccccceeeveeneesienneennen. 367, 467
CONSLANES. c.uuvveeeireeerieeeneteeerieeeenreeeessenneereees 366
declaring........cocceveveenenienienieeeieeeenn 364, 367
ENVITONIMENL.....uvteieereerriieereeeeeeieeeessreeeesneeees 124
global......ooieieeeee e 376
10CAL.c.ececceec e 376
NAINIES. .eveveerrreerereeeeeeeeeeeeeeeererernnnnssssssnnns 366, 459
a7 1 -) TR 478
] 1 <] | O U UUPUTPT 124

