
Modifying Text...80
Cutting And Pasting (Killing And Yanking) Text..80

The Meta Key..81
Completion..81

Programmable Completion..83
Using History...83

Searching History...84
History Expansion...86

script..86
Summing Up..86
Further Reading...87

9 – Permissions..88

Owners, Group Members, And Everybody Else..89
Reading, Writing, And Executing...90

chmod – Change File Mode...92
What The Heck Is Octal?...93

Setting File Mode With The GUI...95
umask – Set Default Permissions..96

Some Special Permissions..98
Changing Identities..99

su – Run A Shell With Substitute User And Group IDs..99
sudo – Execute A Command As Another User...101

Ubuntu And sudo...101
chown – Change File Owner And Group..102
chgrp – Change Group Ownership...103

Exercising Our Privileges..103
Changing Your Password..106
Summing Up..107
Further Reading..107

10 – Processes...108

How A Process Works...108
Viewing Processes..109

Viewing Processes Dynamically With top..111
Controlling Processes...113

Interrupting A Process..114
Putting A Process In The Background..114
Returning A Process To The Foreground...115
Stopping (Pausing) A Process..116

Signals...117
Sending Signals To Processes With kill...117
Sending Signals To Multiple Processes With killall..120

More Process Related Commands...120
Summing Up..121

Part 2 – Configuration And The Environment.............................123

11 – The Environment..124

iv

Preview from Notesale.co.uk

Page 6 of 537

24 – Writing Your First Script..354

What Are Shell Scripts?...354
How To Write A Shell Script...354
Script File Format..355
Executable Permissions..356
Script File Location..356

Good Locations For Scripts..358
More Formatting Tricks..358

Long Option Names..358
Indentation And line-continuation...358

Configuring vim For Script Writing...359
Summing Up..360
Further Reading..360

25 – Starting A Project...361

First Stage: Minimal Document...361
Second Stage: Adding A Little Data..363
Variables And Constants...364

Assigning Values To Variables And Constants...367
Here Documents...368
Summing Up..371
Further Reading..371

26 – Top-Down Design...372

Shell Functions..373
Local Variables..376
Keep Scripts Running..377

Shell Functions In Your .bashrc File..380
Summing Up..380
Further Reading..380

27 – Flow Control: Branching With if...381

if...381
Exit Status...382
test...384

File Expressions...384
String Expressions..387
Integer Expressions..388

A More Modern Version Of test...389
(()) - Designed For Integers..391
Combining Expressions...392

Portability Is The Hobgoblin Of Little Minds...394
Control Operators: Another Way To Branch..394
Summing Up..395
Further Reading..396

28 – Reading Keyboard Input..397

read – Read Values From Standard Input...398
Options...400

x

Preview from Notesale.co.uk

Page 12 of 537

IFS..402
You Can’t Pipe read...404

Validating Input..404
Menus..406
Summing Up..407

Extra Credit...407
Further Reading..408

29 – Flow Control: Looping With while / until...409

Looping..409
while..409

Breaking Out Of A Loop...412
until...413

Reading Files With Loops...414
Summing Up..415
Further Reading..415

30 – Troubleshooting...416

Syntactic Errors...416
Missing Quotes...417
Missing Or Unexpected Tokens..417
Unanticipated Expansions..418

Logical Errors ...420
Defensive Programming...420
Verifying Input...422

Design Is A Function Of Time..422
Testing...422

Test Cases..423
Debugging...424

Finding The Problem Area..424
Tracing..424
Examining Values During Execution..427

Summing Up..427
Further Reading..428

31 – Flow Control: Branching With case...429

case...429
Patterns..431
Performing Multiple Actions..433

Summing Up..434
Further Reading..434

32 – Positional Parameters...436

Accessing The Command Line...436
Determining The Number of Arguments...437
shift – Getting Access To Many Arguments..438
Simple Applications..439
Using Positional Parameters With Shell Functions..440

Handling Positional Parameters En Masse...441

xi

Preview from Notesale.co.uk

Page 13 of 537

Introduction

I want to tell you a story.

No, not the story of how, in 1991, Linus Torvalds wrote the first version of the Linux ker-
nel. You can read that story in lots of Linux books. Nor am I going to tell you the story of
how, some years earlier, Richard Stallman began the GNU Project to create a free Unix-
like operating system. That's an important story too, but most other Linux books have that
one, as well.

No, I want to tell you the story of how you can take back control of your computer.

When I began working with computers as a college student in the late 1970s, there was a
revolution going on. The invention of the microprocessor had made it possible for ordi-
nary people like you and me to actually own a computer. It's hard for many people today
to imagine what the world was like when only big business and big government ran all
the computers. Let's just say, you couldn't get much done.

Today, the world is very different. Computers are everywhere, from tiny wristwatches to
giant data centers to everything in between. In addition to ubiquitous computers, we also
have a ubiquitous network connecting them together. This has created a wondrous new
age of personal empowerment and creative freedom, but over the last couple of decades
something else has been happening. A few giant corporations have been imposing their
control over most of the world's computers and deciding what you can and cannot do
with them. Fortunately, people from all over the world are doing something about it. They
are fighting to maintain control of their computers by writing their own software. They
are building Linux.

Many people speak of “freedom” with regard to Linux, but I don't think most people
know what this freedom really means. Freedom is the power to decide what your com-
puter does, and the only way to have this freedom is to know what your computer is do-
ing. Freedom is a computer that is without secrets, one where everything can be known if
you care enough to find out.

Why Use The Command Line?

Have you ever noticed in the movies when the “super hacker,”—you know, the guy who   
can break into the ultra-secure military computer in under thirty seconds—sits down at   
the computer, he never touches a mouse? It's because movie makers realize that we, as
human beings, instinctively know the only way to really get anything done on a computer

xvi

Preview from Notesale.co.uk

Page 18 of 537

Your First Keystrokes

leges.

Assuming that things are good so far, let's try some typing. Enter some gibberish at the
prompt like so:

[me@linuxbox ~]$ kaekfjaeifj

Since this command makes no sense, the shell will tell us so and give us another chance:

bash: kaekfjaeifj: command not found
[me@linuxbox ~]$

Command History

If we press the up-arrow key, we will see that the previous command “kaekfjaeifj” reap-
pears after the prompt. This is called command history. Most Linux distributions remem-
ber the last 500 commands by default. Press the down-arrow key and the previous com-
mand disappears.

Cursor Movement

Recall the previous command with the up-arrow key again. Now try the left and right-ar-
row keys. See how we can position the cursor anywhere on the command line? This
makes editing commands easy.

A Few Words About Mice And Focus

While the shell is all about the keyboard, you can also use a mouse with your ter-
minal emulator. There is a mechanism built into the X Window System (the un-
derlying engine that makes the GUI go) that supports a quick copy and paste tech-
nique. If you highlight some text by holding down the left mouse button and drag-
ging the mouse over it (or double clicking on a word), it is copied into a buffer
maintained by X. Pressing the middle mouse button will cause the text to be
pasted at the cursor location. Try it.
Note: Don't be tempted to use Ctrl-c and Ctrl-v to perform copy and paste
inside a terminal window. They don't work. These control codes have different
meanings to the shell and were assigned many years before Microsoft Windows.

3

Preview from Notesale.co.uk

Page 27 of 537

2 – Navigation

2 – Navigation

The first thing we need to learn (besides just typing) is how to navigate the file system on
our Linux system. In this chapter we will introduce the following commands:

● pwd - Print name of current working directory

● cd - Change directory

● ls - List directory contents

Understanding The File System Tree

Like Windows, a Unix-like operating system such as Linux organizes its files in what is
called a hierarchical directory structure. This means that they are organized in a tree-like
pattern of directories (sometimes called folders in other systems), which may contain
files and other directories. The first directory in the file system is called the root direc-
tory. The root directory contains files and subdirectories, which contain more files and
subdirectories and so on and so on.

Note that unlike Windows, which has a separate file system tree for each storage device,
Unix-like systems such as Linux always have a single file system tree, regardless of how
many drives or storage devices are attached to the computer. Storage devices are attached
(or more correctly, mounted) at various points on the tree according to the whims of the
system administrator, the person (or persons) responsible for the maintenance of the sys-
tem.

The Current Working Directory

Most of us are probably familiar with a graphical file manager which represents the file
system tree as in Figure 1. Notice that the tree is usually shown upended, that is, with the
root at the top and the various branches descending below.

However, the command line has no pictures, so to navigate the file system tree we need
to think of it in a different way.

7

Preview from Notesale.co.uk

Page 31 of 537

Wildcards

Data??? Any file beginning with “Data” followed
by exactly three characters

[abc]* Any file beginning with either an “a”, a
“b”, or a “c”

BACKUP.[0-9][0-9][0-9] Any file beginning with “BACKUP.”
followed by exactly three numerals

[[:upper:]]* Any file beginning with an uppercase letter

[![:digit:]]* Any file not beginning with a numeral

*[[:lower:]123] Any file ending with a lowercase letter or
the numerals “1”, “2”, or “3”

Wildcards can be used with any command that accepts filenames as arguments, but we’ll
talk more about that in Chapter 7.

Character Ranges

If you are coming from another Unix-like environment or have been reading
some other books on this subject, you may have encountered the [A-Z] or the
[a-z] character range notations. These are traditional Unix notations and
worked in older versions of Linux as well. They can still work, but you have to be
very careful with them because they will not produce the expected results unless
properly configured. For now, you should avoid using them and use character
classes instead.

Wildcards Work In The GUI Too

Wildcards are especially valuable not only because they are used so frequently on
the command line, but are also supported by some graphical file managers.
● In Nautilus (the file manager for GNOME), you can select files using the

Edit/Select Pattern menu item. Just enter a file selection pattern with wild-
cards and the files in the currently viewed directory will be highlighted for se-
lection.

● In some versions of Dolphin and Konqueror (the file managers for KDE),
you can enter wildcards directly on the location bar. For example, if you want
to see all the files starting with a lowercase “u” in the /usr/bin directory, enter
“/usr/bin/u*” in the location bar and it will display the result.

27

Preview from Notesale.co.uk

Page 51 of 537

Creating Your Own Commands With alias

Great! “foo” is not taken. So let's create our alias:

[me@linuxbox ~]$ alias foo='cd /usr; ls; cd -'

Notice the structure of this command:

alias name='string'

After the command “alias” we give alias a name followed immediately (no whitespace al-
lowed) by an equals sign, followed immediately by a quoted string containing the mean-
ing to be assigned to the name. After we define our alias, it can be used anywhere the
shell would expect a command. Let's try it:

[me@linuxbox ~]$ foo
bin games kerberos lib64 local share tmp
etc include lib libexec sbin src
/home/me
[me@linuxbox ~]$

We can also use the type command again to see our alias:

[me@linuxbox ~]$ type foo
foo is aliased to `cd /usr; ls ; cd -'

To remove an alias, the unalias command is used, like so:

[me@linuxbox ~]$ unalias foo
[me@linuxbox ~]$ type foo
bash: type: foo: not found

While we purposefully avoided naming our alias with an existing command name, it is
not uncommon to do so. This is often done to apply a commonly desired option to each
invocation of a common command. For instance, we saw earlier how the ls command is
often aliased to add color support:

51

Preview from Notesale.co.uk

Page 75 of 537

6 – Redirection

standard error we must refer to its file descriptor. A program can produce output on any
of several numbered file streams. While we have referred to the first three of these file
streams as standard input, output and error, the shell references them internally as file de-
scriptors 0, 1 and 2, respectively. The shell provides a notation for redirecting files using
the file descriptor number. Since standard error is the same as file descriptor number 2,
we can redirect standard error with this notation:

[me@linuxbox ~]$ ls -l /bin/usr 2> ls-error.txt

The file descriptor “2” is placed immediately before the redirection operator to perform
the redirection of standard error to the file ls-error.txt.

Redirecting Standard Output And Standard Error To One File

There are cases in which we may wish to capture all of the output of a command to a sin-
gle file. To do this, we must redirect both standard output and standard error at the same
time. There are two ways to do this. First, the traditional way, which works with old ver-
sions of the shell:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt 2>&1

Using this method, we perform two redirections. First we redirect standard output to the
file ls-output.txt and then we redirect file descriptor 2 (standard error) to file de-
scriptor one (standard output) using the notation 2>&1.

Notice that the order of the redirections is significant. The redirection of stan-
dard error must always occur after redirecting standard output or it doesn't work. In
the example above,

>ls-output.txt 2>&1

redirects standard error to the file ls-output.txt, but if the order is changed to

 2>&1 >ls-output.txt

standard error is directed to the screen.

Recent versions of bash provide a second, more streamlined method for performing this

56

Preview from Notesale.co.uk

Page 80 of 537

6 – Redirection

cat [file...]

In most cases, you can think of cat as being analogous to the TYPE command in DOS.
You can use it to display files without paging, for example:

[me@linuxbox ~]$ cat ls-output.txt

will display the contents of the file ls-output.txt. cat is often used to display short
text files. Since cat can accept more than one file as an argument, it can also be used to
join files together. Say we have downloaded a large file that has been split into multiple
parts (multimedia files are often split this way on Usenet), and we want to join them back
together. If the files were named:

movie.mpeg.001 movie.mpeg.002 ... movie.mpeg.099

we could join them back together with this command:

cat movie.mpeg.0* > movie.mpeg

Since wildcards always expand in sorted order, the arguments will be arranged in the cor-
rect order.

This is all well and good, but what does this have to do with standard input? Nothing yet,
but let's try something else. What happens if we enter “cat” with no arguments:

[me@linuxbox ~]$ cat

Nothing happens, it just sits there like it's hung. It may seem that way, but it's really doing
exactly what it's supposed to.

If cat is not given any arguments, it reads from standard input and since standard input
is, by default, attached to the keyboard, it's waiting for us to type something! Try adding
the following text and pressing Enter:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.

Next, type a Ctrl-d (i.e., hold down the Ctrl key and press “d”) to tell cat that it has

58

Preview from Notesale.co.uk

Page 82 of 537

6 – Redirection

utilized by a shell feature called pipelines. Using the pipe operator “|” (vertical bar), the
standard output of one command can be piped into the standard input of another:

command1 | command2

To fully demonstrate this, we are going to need some commands. Remember how we said
there was one we already knew that accepts standard input? It's less. We can use less
to display, page-by-page, the output of any command that sends its results to standard
output:

[me@linuxbox ~]$ ls -l /usr/bin | less

This is extremely handy! Using this technique, we can conveniently examine the output
of any command that produces standard output.

The Difference Between > and |

At first glance, it may be hard to understand the redirection performed by the
pipeline operator | versus the redirection operator >. Simply put, the redirection
operator connects a command with a file while the pipeline operator connects the
output of one command with the input of a second command.

command1 > file1
command1 | command2

A lot of people will try the following when they are learning about pipelines, “just
to see what happens.”

command1 > command2

Answer: Sometimes something really bad.

Here is an actual example submitted by a reader who was administering a Linux-
based server appliance. As the superuser, he did this:

cd /usr/bin
ls > less

60

Preview from Notesale.co.uk

Page 84 of 537

7 – Seeing The World As The Shell Sees It

7 – Seeing The World As The Shell Sees It

In this chapter we are going to look at some of the “magic” that occurs on the command
line when you press the enter key. While we will examine several interesting and com-
plex features of the shell, we will do it with just one new command:

● echo – Display a line of text

Expansion

Each time you type a command line and press the enter key, bash performs several pro-
cesses upon the text before it carries out your command. We have seen a couple of cases
of how a simple character sequence, for example “*”, can have a lot of meaning to the
shell. The process that makes this happen is called expansion. With expansion, you enter
something and it is expanded into something else before the shell acts upon it. To demon-
strate what we mean by this, let's take a look at the echo command. echo is a shell
builtin that performs a very simple task. It prints out its text arguments on standard out-
put:

[me@linuxbox ~]$ echo this is a test
this is a test

That's pretty straightforward. Any argument passed to echo gets displayed. Let's try an-
other example:

[me@linuxbox ~]$ echo *
Desktop Documents ls-output.txt Music Pictures Public Templates
Videos

So what just happened? Why didn't echo print “*”? As you recall from our work with
wildcards, the “*” character means match any characters in a filename, but what we didn't
see in our original discussion was how the shell does that. The simple answer is that the
shell expands the “*” into something else (in this instance, the names of the files in the

67

Preview from Notesale.co.uk

Page 91 of 537

Expansion

[me@linuxbox ~]$ echo $(((5**2) * 3))
75

Here is an example using the division and remainder operators. Notice the effect of inte-
ger division:

[me@linuxbox ~]$ echo Five divided by two equals $((5/2))
Five divided by two equals 2
[me@linuxbox ~]$ echo with $((5%2)) left over.
with 1 left over.

Arithmetic expansion is covered in greater detail in Chapter 34.

Brace Expansion

Perhaps the strangest expansion is called brace expansion. With it, you can create multi-
ple text strings from a pattern containing braces. Here's an example:

[me@linuxbox ~]$ echo Front-{A,B,C}-Back
Front-A-Back Front-B-Back Front-C-Back

Patterns to be brace expanded may contain a leading portion called a preamble and a
trailing portion called a postscript. The brace expression itself may contain either a
comma-separated list of strings, or a range of integers or single characters. The pattern
may not contain embedded whitespace. Here is an example using a range of integers:

[me@linuxbox ~]$ echo Number_{1..5}
Number_1 Number_2 Number_3 Number_4 Number_5

Integers may also be zero-padded like so:

[me@linuxbox ~]$ echo {01..15}
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
[me@linuxbox ~]$ echo {001..15}
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015

A range of letters in reverse order:

71

Preview from Notesale.co.uk

Page 95 of 537

Command Line Editing

Table 8-3: Cut And Paste Commands

Key Action

Ctrl-k Kill text from the cursor location to the end of line.

Ctrl-u Kill text from the cursor location to the beginning of the line.

Alt-d Kill text from the cursor location to the end of the current word.

Alt-
Backspace

Kill text from the cursor location to the beginning of the current
word. If the cursor is at the beginning of a word, kill the previous
word.

Ctrl-y Yank text from the kill-ring and insert it at the cursor location.

The Meta Key

If you venture into the Readline documentation, which can be found in the
READLINE section of the bash man page, you will encounter the term “meta
key.” On modern keyboards this maps to the Alt key but it wasn't always so.
Back in the dim times (before PCs but after Unix) not everybody had their own
computer. What they might have had was a device called a terminal. A terminal
was a communication device that featured a text display screen and a keyboard
and just enough electronics inside to display text characters and move the cursor
around. It was attached (usually by serial cable) to a larger computer or the com-
munication network of a larger computer. There were many different brands of
terminals and they all had different keyboards and display feature sets. Since they
all tended to at least understand ASCII, software developers wanting portable ap-
plications wrote to the lowest common denominator. Unix systems have a very
elaborate way of dealing with terminals and their different display features. Since
the developers of Readline could not be sure of the presence of a dedicated extra
control key, they invented one and called it “meta.” While the Alt key serves as
the meta key on modern keyboards, you can also press and release the Esc key to
get the same effect as holding down the Alt key if you're still using a terminal
(which you can still do in Linux!).

Completion

Another way that the shell can help you is through a mechanism called completion. Com-
pletion occurs when you press the tab key while typing a command. Let's see how this
works. Given a home directory that looks like this:

81

Preview from Notesale.co.uk

Page 105 of 537

Completion

completion will also work on variables (if the beginning of the word is a “$”), user names
(if the word begins with “~”), commands (if the word is the first word on the line.) and
hostnames (if the beginning of the word is “@”). Hostname completion only works for
hostnames listed in /etc/hosts.

There are a number of control and meta key sequences that are associated with comple-
tion:

Table 8-4: Completion Commands

Key Action

Alt-? Display list of possible completions. On most systems you can also
do this by pressing the tab key a second time, which is much easier.

Alt-* Insert all possible completions. This is useful when you want to use
more than one possible match.

There quite a few more that I find rather obscure. You can see a list in the bash man
page under “READLINE”.

Programmable Completion

Recent versions of bash have a facility called programmable completion. Pro-
grammable completion allows you (or more likely, your distribution provider) to
add additional completion rules. Usually this is done to add support for specific
applications. For example it is possible to add completions for the option list of a
command or match particular file types that an application supports. Ubuntu has a
fairly large set defined by default. Programmable completion is implemented by
shell functions, a kind of mini shell script that we will cover in later chapters. If
you are curious, try:
set | less

and see if you can find them. Not all distributions include them by default.

Using History

As we discovered in Chapter 1, bash maintains a history of commands that have been
entered. This list of commands is kept in your home directory in a file called
.bash_history. The history facility is a useful resource for reducing the amount of
typing you have to do, especially when combined with command line editing.

83

Preview from Notesale.co.uk

Page 107 of 537

Reading, Writing, And Executing

If no character is specified, “all” will be assumed. The operation may be a “+” indicating
that a permission is to be added, a “-” indicating that a permission is to be taken away, or
a “=” indicating that only the specified permissions are to be applied and that all others
are to be removed.

Permissions are specified with the “r”, “w”, and “x” characters. Here are some examples
of symbolic notation:

Table 9-6: chmod Symbolic Notation Examples

Notation Meaning

u+x Add execute permission for the owner.

u-x Remove execute permission from the owner.

+x Add execute permission for the owner, group, and world.
Equivalent to a+x.

o-rw Remove the read and write permission from anyone besides the
owner and group owner.

go=rw Set the group owner and anyone besides the owner to have read and
write permission. If either the group owner or world previously had
execute permissions, they are removed.

u+x,go=rx Add execute permission for the owner and set the permissions for
the group and others to read and execute. Multiple specifications
may be separated by commas.

Some people prefer to use octal notation, some folks really like the symbolic. Symbolic
notation does offer the advantage of allowing you to set a single attribute without disturb-
ing any of the others.

Take a look at the chmod man page for more details and a list of options. A word of cau-
tion regarding the “--recursive” option: it acts on both files and directories, so it's not as
useful as one would hope since, we rarely want files and directories to have the same per-
missions.

Setting File Mode With The GUI

Now that we have seen how the permissions on files and directories are set, we can better
understand the permission dialogs in the GUI. In both Nautilus (GNOME) and Kon-
queror (KDE), right-clicking a file or directory icon will expose a properties dialog. Here
is an example from KDE 3.5:

95

Preview from Notesale.co.uk

Page 119 of 537

Reading, Writing, And Executing

with the value 0002 (the value 0022 is another common default value), which is the oc-
tal representation of our mask. We next create a new instance of the file foo.txt and
observe its permissions.

We can see that both the owner and group get read and write permission, while everyone
else only gets read permission. The reason that world does not have write permission is
because of the value of the mask. Let's repeat our example, this time setting the mask our-
selves:

[me@linuxbox ~]$ rm foo.txt
[me@linuxbox ~]$ umask 0000
[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-rw- 1 me me 0 2008-03-06 14:58 foo.txt

When we set the mask to 0000 (effectively turning it off), we see that the file is now
world writable. To understand how this works, we have to look at octal numbers again. If
we take the mask and expand it into binary, and then compare it to the attributes we can
see what happens:

Original file mode --- rw- rw- rw-

Mask 000 000 000 010

Result --- rw- rw- r--

Ignore for the moment the leading zeros (we'll get to those in a minute) and observe that
where the 1 appears in our mask, an attribute was removed—in this case, the world write   
permission. That's what the mask does. Everywhere a 1 appears in the binary value of the
mask, an attribute is unset. If we look at a mask value of 0022, we can see what it does:

Original file mode --- rw- rw- rw-

Mask 000 000 010 010

Result --- rw- r-- r--

Again, where a 1 appears in the binary value, the corresponding attribute is unset. Play
with some values (try some sevens) to get used to how this works. When you're done, re-
member to clean up:

97

Preview from Notesale.co.uk

Page 121 of 537

9 – Permissions

changed to the user's home directory. This is usually what we want. If the user is not
specified, the superuser is assumed. Notice that (strangely) the “-l” may be abbreviated
“-”, which is how it is most often used. To start a shell for the superuser, we would do
this:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]#

After entering the command, we are prompted for the superuser's password. If it is suc-
cessfully entered, a new shell prompt appears indicating that this shell has superuser priv-
ileges (the trailing “#” rather than a “$”) and the current working directory is now the
home directory for the superuser (normally /root.) Once in the new shell, we can carry
out commands as the superuser. When finished, enter “exit” to return to the previous
shell:

[root@linuxbox ~]# exit
[me@linuxbox ~]$

It is also possible to execute a single command rather than starting a new interactive com-
mand by using su this way:

su -c 'command'

Using this form, a single command line is passed to the new shell for execution. It is im-
portant to enclose the command in quotes, as we do not want expansion to occur in our
shell, but rather in the new shell:

[me@linuxbox ~]$ su -c 'ls -l /root/*'
Password:
-rw------- 1 root root 754 2007-08-11 03:19 /root/anaconda-ks.cfg

/root/Mail:
total 0
[me@linuxbox ~]$

100

Preview from Notesale.co.uk

Page 124 of 537

Changing Identities

:admins Changes the group owner to the group admins. The file owner is
unchanged.

bob: Change the file owner from the current owner to user bob and
changes the group owner to the login group of user bob.

Let's say that we have two users; janet, who has access to superuser privileges and
tony, who does not. User janet wants to copy a file from her home directory to the
home directory of user tony. Since user janet wants tony to be able to edit the file,
janet changes the ownership of the copied file from janet to tony:

[janet@linuxbox ~]$ sudo cp myfile.txt ~tony
Password:
[janet@linuxbox ~]$ sudo ls -l ~tony/myfile.txt
 -rw-r--r-- 1 root root 8031 2008-03-20 14:30 /home/tony/myfile.txt
[janet@linuxbox ~]$ sudo chown tony: ~tony/myfile.txt
[janet@linuxbox ~]$ sudo ls -l ~tony/myfile.txt
 -rw-r--r-- 1 tony tony 8031 2008-03-20 14:30 /home/tony/myfile.txt

Here we see user janet copy the file from her directory to the home directory of user
tony. Next, janet changes the ownership of the file from root (a result of using
sudo) to tony. Using the trailing colon in the first argument, janet also changed the
group ownership of the file to the login group of tony, which happens to be group
tony.

Notice that after the first use of sudo, janet was not prompted for her password? This
is because sudo, in most configurations, “trusts” you for several minutes until its timer
runs out.

chgrp – Change Group Ownership

In older versions of Unix, the chown command only changed file ownership, not group
ownership. For that purpose, a separate command, chgrp was used. It works much the
same way as chown, except for being more limited.

Exercising Our Privileges

Now that we have learned how this permissions thing works, it's time to show it off. We
are going to demonstrate the solution to a common problem—setting up a     shared direc-
tory. Let's imagine that we have two users named “bill” and “karen.” They both have mu-
sic CD collections and wish to set up a shared directory, where they will each store their

103

Preview from Notesale.co.uk

Page 127 of 537

Exercising Our Privileges

[bill@linuxbox ~]$ sudo chown :music /usr/local/share/Music
[bill@linuxbox ~]$ sudo chmod 775 /usr/local/share/Music
[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxrwxr-x 2 root music 4096 2008-03-21 18:05 /usr/local/share/Music

So what does this all mean? It means that we now have a directory,
/usr/local/share/Music that is owned by root and allows read and write ac-
cess to group music. Group music has members bill and karen, thus bill and
karen can create files in directory /usr/local/share/Music. Other users can list
the contents of the directory but cannot create files there.

But we still have a problem. With the current permissions, files and directories created
within the Music directory will have the normal permissions of the users bill and
karen:

[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ ls -l /usr/local/share/Music
-rw-r--r-- 1 bill bill 0 2008-03-24 20:03 test_file

Actually there are two problems. First, the default umask on this system is 0022 which
prevents group members from writing files belonging to other members of the group.
This would not be a problem if the shared directory only contained files, but since this di-
rectory will store music, and music is usually organized in a hierarchy of artists and al-
bums, members of the group will need the ability to create files and directories inside di-
rectories created by other members. We need to change the umask used by bill and
karen to 0002 instead.

Second, each file and directory created by one member will be set to the primary group of
the user rather than the group music. This can be fixed by setting the setgid bit on the
directory:

[bill@linuxbox ~]$ sudo chmod g+s /usr/local/share/Music
[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxrwsr-x 2 root music 4096 2008-03-24 20:03 /usr/local/share/Music

Now we test to see if the new permissions fix the problem. bill sets his umask to
0002, removes the previous test file, and creates a new test file and directory:

[bill@linuxbox ~]$ umask 0002

105

Preview from Notesale.co.uk

Page 129 of 537

Viewing Processes

[me@linuxbox ~]$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 2136 644 ? Ss Mar05 0:31 init
root 2 0.0 0.0 0 0 ? S< Mar05 0:00 [kt]
root 3 0.0 0.0 0 0 ? S< Mar05 0:00 [mi]
root 4 0.0 0.0 0 0 ? S< Mar05 0:00 [ks]
root 5 0.0 0.0 0 0 ? S< Mar05 0:06 [wa]
root 6 0.0 0.0 0 0 ? S< Mar05 0:36 [ev]
root 7 0.0 0.0 0 0 ? S< Mar05 0:00 [kh]

and many more...

This set of options displays the processes belonging to every user. Using the options
without the leading dash invokes the command with “BSD style” behavior. The Linux
version of ps can emulate the behavior of the ps program found in several different
Unix implementations. With these options, we get these additional columns:

Table 10-2: BSD Style ps Column Headers

Header Meaning

USER User ID. This is the owner of the process.

%CPU CPU usage in percent.

%MEM Memory usage in percent.

VSZ Virtual memory size.

RSS Resident Set Size. The amount of physical memory (RAM) the
process is using in kilobytes.

START Time when the process started. For values over 24 hours, a date is
used.

Viewing Processes Dynamically With top

While the ps command can reveal a lot about what the machine is doing, it provides only
a snapshot of the machine's state at the moment the ps command is executed. To see a
more dynamic view of the machine's activity, we use the top command:

[me@linuxbox ~]$ top

111

Preview from Notesale.co.uk

Page 135 of 537

10 – Processes

experiments, we're going to use a little program called xlogo as our guinea pig. The
xlogo program is a sample program supplied with the X Window System (the underly-
ing engine that makes the graphics on our display go) which simply displays a re-sizable
window containing the X logo. First, we'll get to know our test subject:

[me@linuxbox ~]$ xlogo

After entering the command, a small window containing the logo should appear some-
where on the screen. On some systems, xlogo may print a warning message, but it may
be safely ignored.

Tip: If your system does not include the xlogo program, try using gedit or
kwrite instead.

We can verify that xlogo is running by resizing its window. If the logo is redrawn in the
new size, the program is running.

Notice how our shell prompt has not returned? This is because the shell is waiting for the
program to finish, just like all the other programs we have used so far. If we close the
xlogo window, the prompt returns.

Interrupting A Process

Let's observe what happens when we run xlogo again. First, enter the xlogo command
and verify that the program is running. Next, return to the terminal window and press
Ctrl-c.

[me@linuxbox ~]$ xlogo
[me@linuxbox ~]$

In a terminal, pressing Ctrl-c, interrupts a program. This means that we politely asked
the program to terminate. After we pressed Ctrl-c, the xlogo window closed and the
shell prompt returned.

Many (but not all) command-line programs can be interrupted by using this technique.

Putting A Process In The Background

Let's say we wanted to get the shell prompt back without terminating the xlogo pro-

114

Preview from Notesale.co.uk

Page 138 of 537

10 – Processes

the program but the program may choose to
ignore it.

28 WINCH Window Change. This is a signal sent by the
system when a window changes size. Some
programs , like top and less will respond to
this signal by redrawing themselves to fit the new
window dimensions.

For the curious, a complete list of signals can be seen with the following command:

[me@linuxbox ~]$ kill -l

Sending Signals To Multiple Processes With killall

It's also possible to send signals to multiple processes matching a specified program or
username by using the killall command. Here is the syntax:

killall [-u user] [-signal] name...

To demonstrate, we will start a couple of instances of the xlogo program and then ter-
minate them:

[me@linuxbox ~]$ xlogo &
[1] 18801
[me@linuxbox ~]$ xlogo &
[2] 18802
[me@linuxbox ~]$ killall xlogo
[1]- Terminated xlogo
[2]+ Terminated xlogo

Remember, as with kill, you must have superuser privileges to send signals to pro-
cesses that do not belong to you.

More Process Related Commands

Since monitoring processes is an important system administration task, there are a lot of
commands for it. Here are some to play with:

120

Preview from Notesale.co.uk

Page 144 of 537

More Process Related Commands

Table 10-6: Other Process Related Commands

Command Description

pstree Outputs a process list arranged in a tree-like pattern showing the
parent/child relationships between processes.

vmstat Outputs a snapshot of system resource usage including, memory,
swap and disk I/O. To see a continuous display, follow the
command with a time delay (in seconds) for updates. For example:
vmstat 5. Terminate the output with Ctrl-c.

xload A graphical program that draws a graph showing system load over
time.

tload Similar to the xload program, but draws the graph in the terminal.
Terminate the output with Ctrl-c.

Summing Up

Most modern systems feature a mechanism for managing multiple processes. Linux pro-
vides a rich set of tools for this purpose. Given that Linux is the world's most deployed
server operating system, this makes a lot of sense. However, unlike some other systems,
Linux relies primarily on command line tools for process management. Though there are
graphical process tools for Linux, the command line tools are greatly preferred because of
their speed and light footprint. While the GUI tools may look pretty, they often create a
lot of system load themselves, which somewhat defeats the purpose.

121

Preview from Notesale.co.uk

Page 145 of 537

Modifying The Environment

them, and since programmers use them extensively, they write editors to express their
own desires as to how they should work.

Text editors fall into two basic categories: graphical and text based. GNOME and KDE
both include some popular graphical editors. GNOME ships with an editor called gedit,
which is usually called “Text Editor” in the GNOME menu. KDE usually ships with three
which are (in order of increasing complexity) kedit, kwrite, and kate.

There are many text-based editors. The popular ones you will encounter are nano, vi,
and emacs. The nano editor is a simple, easy-to-use editor designed as a replacement
for the pico editor supplied with the PINE email suite. The vi editor (on most Linux
systems replaced by a program named vim, which is short for “Vi IMproved”) is the tra-
ditional editor for Unix-like systems. It will be the subject of our next chapter. The
emacs editor was originally written by Richard Stallman. It is a gigantic, all-purpose,
does-everything programming environment. While readily available, it is seldom installed
on most Linux systems by default.

Using A Text Editor

All text editors can be invoked from the command line by typing the name of the editor
followed by the name of the file you want to edit. If the file does not already exist, the ed-
itor will assume that you want to create a new file. Here is an example using gedit:

[me@linuxbox ~]$ gedit some_file

This command will start the gedit text editor and load the file named “some_file”, if it
exists.

All graphical text editors are pretty self-explanatory, so we won't cover them here. In-
stead, we will concentrate on our first text-based text editor, nano. Let's fire up nano
and edit the .bashrc file. But before we do that, let's practice some “safe computing.”
Whenever we edit an important configuration file, it is always a good idea to create a
backup copy of the file first. This protects us in case we mess the file up while editing. To
create a backup of the .bashrc file, do this:

[me@linuxbox ~]$ cp .bashrc .bashrc.bak

It doesn't matter what you call the backup file, just pick an understandable name. The ex-
tensions “.bak”, “.sav”, “.old”, and “.orig” are all popular ways of indicating a backup
file. Oh, and remember that cp will overwrite existing files silently.

131

Preview from Notesale.co.uk

Page 155 of 537

A Little Background

A Little Background

The first version of vi was written in 1976 by Bill Joy, a University of California at
Berkley student who later went on to co-found Sun Microsystems. vi derives its name
from the word “visual,” because it was intended to allow editing on a video terminal with
a moving cursor. Previous to visual editors, there were line editors which operated on a
single line of text at a time. To specify a change, we tell a line editor to go to a particular
line and describe what change to make, such as adding or deleting text. With the advent
of video terminals (rather than printer-based terminals like teletypes) visual editing be-
came possible. vi actually incorporates a powerful line editor called ex, and we can use
line editing commands while using vi.

Most Linux distributions don't include real vi; rather, they ship with an enhanced re-
placement called vim (which is short for “vi improved”) written by Bram Moolenaar.
vim is a substantial improvement over traditional Unix vi and is usually symbolically
linked (or aliased) to the name “vi” on Linux systems. In the discussions that follow, we
will assume that we have a program called “vi” that is really vim.

Starting And Stopping vi

To start vi, we simply enter the following:

[me@linuxbox ~]$ vi

And a screen like this should appear:

~
~
~ VIM - Vi Improved
~
~ version 7.1.138
~ by Bram Moolenaar et al.
~ Vim is open source and freely distributable
~
~ Sponsor Vim development!
~ type :help sponsor<Enter> for information
~
~ type :q<Enter> to exit
~ type :help<Enter> or <F1> for on-line help
~ type :help version7<Enter> for version info
~
~ Running in Vi compatible mode
~ type :set nocp<Enter> for Vim defaults

137

Preview from Notesale.co.uk

Page 161 of 537

12 – A Gentle Introduction To vi

nally written, not all video terminals had arrow keys, and skilled typists could use regular
keyboard keys to move the cursor without ever having to lift their fingers from the key-
board.

Many commands in vi can be prefixed with a number, as with the “G” command listed
above. By prefixing a command with a number, we may specify the number of times a
command is to be carried out. For example, the command “5j” causes vi to move the
cursor down five lines.

Basic Editing

Most editing consists of a few basic operations such as inserting text, deleting text, and
moving text around by cutting and pasting. vi, of course, supports all of these operations
in its own unique way. vi also provides a limited form of undo. If we press the “u” key
while in command mode, vi will undo the last change that you made. This will come in
handy as we try out some of the basic editing commands.

Appending Text

vi has several different ways of entering insert mode. We have already used the i com-
mand to insert text.

Let's go back to our foo.txt file for a moment:

The quick brown fox jumped over the lazy dog.

If we wanted to add some text to the end of this sentence, we would discover that the i
command will not do it, since we can't move the cursor beyond the end of the line. vi
provides a command to append text, the sensibly named “a” command. If we move the
cursor to the end of the line and type “a”, the cursor will move past the end of the line
and vi will enter insert mode. This will allow us to add some more text:

The quick brown fox jumped over the lazy dog. It was cool.

Remember to press the Esc key to exit insert mode.

Since we will almost always want to append text to the end of a line, vi offers a shortcut
to move to the end of the current line and start appending. It's the “A” command. Let's try
it and add some more lines to our file.

First, we'll move the cursor to the beginning of the line using the “0” (zero) command.

142

Preview from Notesale.co.uk

Page 166 of 537

12 – A Gentle Introduction To vi

Line 3
Line 4
Line 5

Exit insert mode by pressing the Esc key and undo our change by pressing u.

Deleting Text

As we might expect, vi offers a variety of ways to delete text, all of which contain one
of two keystrokes. First, the x key will delete a character at the cursor location. x may be
preceded by a number specifying how many characters are to be deleted. The d key is
more general purpose. Like x, it may be preceded by a number specifying the number of
times the deletion is to be performed. In addition, d is always followed by a movement
command that controls the size of the deletion. Here are some examples:

Table 12-3: Text Deletion Commands

Command Deletes

x The current character.

3x The current character and the next two characters.

dd The current line.

5dd The current line and the next four lines.

dW From the current cursor position to the beginning of
the next word.

d$ From the current cursor location to the end of the
current line.

d0 From the current cursor location to the beginning of
the line.

d^ From the current cursor location to the first non-
whitespace character in the line.

dG From the current line to the end of the file.

d20G From the current line to the twentieth line of the file.

Place the cursor on the word “It” on the first line of our text. Press the x key repeatedly
until the rest of the sentence is deleted. Next, press the u key repeatedly until the deletion

144

Preview from Notesale.co.uk

Page 168 of 537

12 – A Gentle Introduction To vi

used to cut text. Here are some examples combining the y command with various move-
ment commands:

Table13- 4: Yanking Commands

Command Copies

yy The current line.

5yy The current line and the next four lines.

yW From the current cursor position to the beginning of
the next word.

y$ From the current cursor location to the end of the
current line.

y0 From the current cursor location to the beginning of
the line.

y^ From the current cursor location to the first non-
whitespace character in the line.

yG From the current line to the end of the file.

y20G From the current line to the twentieth line of the file.

Let's try some copy and paste. Place the cursor on the first line of the text and type yy to
copy the current line. Next, move the cursor to the last line (G) and type p to paste the
line below the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
The quick brown fox jumped over the lazy dog. It was cool.

Just as before, the u command will undo our change. With the cursor still positioned on
the last line of the file, type P to paste the text above the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4

146

Preview from Notesale.co.uk

Page 170 of 537

Basic Editing

The quick brown fox jumped over the lazy dog. It was cool.
Line 5

Try out some of the other y commands in the table above and get to know the behavior of
both the p and P commands. When you are done, return the file to its original state.

Joining Lines

vi is rather strict about its idea of a line. Normally, it is not possible to move the cursor
to the end of a line and delete the end-of-line character to join one line with the one be-
low it. Because of this, vi provides a specific command, J (not to be confused with j,
which is for cursor movement) to join lines together.

If we place the cursor on line 3 and type the J command, here's what happens:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3 Line 4
Line 5

Search-And-Replace

vi has the ability to move the cursor to locations based on searches. It can do this on ei-
ther a single line or over an entire file. It can also perform text replacements with or with-
out confirmation from the user.

Searching Within A Line

The f command searches a line and moves the cursor to the next instance of a specified
character. For example, the command fa would move the cursor to the next occurrence
of the character “a” within the current line. After performing a character search within a
line, the search may be repeated by typing a semicolon.

Searching The Entire File

To move the cursor to the next occurrence of a word or phrase, the / command is used.
This works the same way as we learned earlier in the less program. When you type the
/ command a “/” will appear at the bottom of the screen. Next, type the word or phrase to
be searched for, followed by the Enter key. The cursor will move to the next location
containing the search string. A search may be repeated using the previous search string

147

Preview from Notesale.co.uk

Page 171 of 537

12 – A Gentle Introduction To vi

q or Esc Quit substituting.

l Perform this substitution and then quit. Short for “last.”

Ctrl-e, Ctrl-y Scroll down and scroll up, respectively. Useful for viewing
the context of the proposed substitution.

If you type y, the substitution will be performed, n will cause vi to skip this instance and
move on to the next one.

Editing Multiple Files

It's often useful to edit more than one file at a time. You might need to make changes to
multiple files or you may need to copy content from one file into another. With vi we
can open multiple files for editing by specifying them on the command line:

vi file1 file2 file3...

Let's exit our existing vi session and create a new file for editing. Type :wq to exit vi,
saving our modified text. Next, we'll create an additional file in our home directory that
we can play with. We'll create the file by capturing some output from the ls command:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Let's edit our old file and our new one with vi:

[me@linuxbox ~]$ vi foo.txt ls-output.txt

vi will start up and we will see the first file on the screen:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

150

Preview from Notesale.co.uk

Page 174 of 537

Adding Color

\033[0;36m Cyan \033[1;36m Light Cyan

\033[0;37m Light Grey \033[1;37m White

Let's try to make a red prompt. We'll insert the escape code at the beginning:

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$ "
<me@linuxbox ~>$

That works, but notice that all the text that we type after the prompt is also red. To fix
this, we will add another escape code to the end of the prompt that tells the terminal emu-
lator to return to the previous color:

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$\[\033[0m\] "
<me@linuxbox ~>$

That's better!

It's also possible to set the text background color using the codes listed below. The back-
ground colors do not support the bold attribute.

Table 13-3: Escape Sequences Used To Set Background Color

Sequence Background Color Sequence Background Color

\033[0;40m Black \033[0;44m Blue

\033[0;41m Red \033[0;45m Purple

\033[0;42m Green \033[0;46m Cyan

\033[0;43m Brown \033[0;47m Light Grey

We can create a prompt with a red background by applying a simple change to the first
escape code:

<me@linuxbox ~>$ PS1="\[\033[0;41m\]<\u@\h \W>\$\[\033[0m\] "
<me@linuxbox ~>$

Try out the color codes and see what you can create!

161

Preview from Notesale.co.uk

Page 185 of 537

Moving The Cursor

Table 13-5: Breakdown Of Complex Prompt String

Sequence Action

\[Begins a non-printing character sequence. The purpose of this
is to allow bash to properly calculate the size of the visible
prompt. Without an accurate calculation, command line editing
features cannot position the cursor correctly.

\033[s Store the cursor position. This is needed to return to the prompt
location after the bar and clock have been drawn at the top of
the screen. Be aware that some terminal emulators do not
honor this code.

\033[0;0H Move the cursor to the upper left corner, which is line 0,
column 0.

\033[0;41m Set the background color to red.

\033[K Clear from the current cursor location (the top left corner) to
the end of the line. Since the background color is now red, the
line is cleared to that color creating our bar. Note that clearing
to the end of the line does not change the cursor position, which
remains at the upper left corner.

\033[1;33m Set the text color to yellow.

\t Display the current time. While this is a “printing” element, we
still include it in the non-printing portion of the prompt, since
we don't want bash to include the clock when calculating the
true size of the displayed prompt.

\033[0m Turn off color. This affects both the text and background.

\033[u Restore the cursor position saved earlier.

\] End the non-printing characters sequence.

<\u@\h \W>\$ Prompt string.

Saving The Prompt

Obviously, we don't want to be typing that monster all the time, so we'll want to store our
prompt someplace. We can make the prompt permanent by adding it to our .bashrc
file. To do so, add these two lines to the file:

PS1="\[\033[s\033[0;0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]

163

Preview from Notesale.co.uk

Page 187 of 537

How A Package System Works

Fedora, Red Hat
Enterprise Linux, CentOS

rpm yum

Common Package Management Tasks

There are many operations that can be performed with the command line package man-
agement tools. We will look at the most common. Be aware that the low-level tools also
support creation of package files, an activity outside the scope of this book.

In the discussion below, the term “package_name” refers to the actual name of a pack-
age rather than the term “package_file,” which is the name of the file that contains
the package.

Finding A Package In A Repository

Using the high-level tools to search repository metadata, a package can be located based
on its name or description.

Table 14-3: Package Search Commands

Style Command(s)

Debian apt-get update
apt-cache search search_string

Red Hat yum search search_string

Example: To search a yum repository for the emacs text editor, this command could be
used:

yum search emacs

Installing A Package From A Repository

High-level tools permit a package to be downloaded from a repository and installed with
full dependency resolution.

Table 14-4: Package Installation Commands

Style Command(s)

Debian apt-get update

169

Preview from Notesale.co.uk

Page 193 of 537

Further Reading

Further Reading

Spend some time getting to know the package management system for your distribution.
Each distribution provides documentation for its package management tools. In addition,
here are some more generic sources:

● The Debian GNU/Linux FAQ chapter on package management provides an over-
view of package management on Debian systems :
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html

● The home page for the RPM project:
http://www.rpm.org

● The home page for the YUM project at Duke University:
http://linux.duke.edu/projects/yum/

● For a little background, the Wikipedia has an article on metadata:
http://en.wikipedia.org/wiki/Metadata

175

Preview from Notesale.co.uk

Page 199 of 537

15 – Storage Media

15 – Storage Media

In previous chapters we’ve looked at manipulating data at the file level. In this chapter,
we will consider data at the device level. Linux has amazing capabilities for handling
storage devices, whether physical storage, such as hard disks, or network storage, or vir-
tual storage devices like RAID (Redundant Array of Independent Disks) and LVM (Logi-
cal Volume Manager).

However, since this is not a book about system administration, we will not try to cover
this entire topic in depth. What we will try to do is introduce some of the concepts and
key commands that are used to manage storage devices.

To carry out the exercises in this chapter, we will use a USB flash drive, a CD-RW disc
(for systems equipped with a CD-ROM burner) and a floppy disk (again, if the system is
so equipped.)

We will look at the following commands:

● mount – Mount a file system

● umount – Unmount a file system

● fsck – Check and repair a file system

● fdisk – Partition table manipulator

● mkfs – Create a file system

● fdformat – Format a floppy disk

● dd – Write block oriented data directly to a device

● genisoimage (mkisofs) – Create an ISO 9660 image file

● wodim (cdrecord) – Write data to optical storage media

● md5sum – Calculate an MD5 checksum

Mounting And Unmounting Storage Devices

Recent advances in the Linux desktop have made storage device management extremely

176

Preview from Notesale.co.uk

Page 200 of 537

15 – Storage Media

tem) has been mounted on /media/live-1.0.10-8, and is type iso9660 (a CD-
ROM). For purposes of our experiment, we're interested in the name of the device. When
you conduct this experiment yourself, the device name will most likely be different.

Warning: In the examples that follow, it is vitally important that you pay close at-
tention to the actual device names in use on your system and do not use the names
used in this text!

Also note that audio CDs are not the same as CD-ROMs. Audio CDs do not contain
file systems and thus cannot be mounted in the usual sense.

Now that we have the device name of the CD-ROM drive, let's unmount the disc and re-
mount it at another location in the file system tree. To do this, we become the superuser
(using the command appropriate for our system) and unmount the disc with the umount
(notice the spelling) command:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]# umount /dev/hdc

The next step is to create a new mount point for the disk. A mount point is simply a direc-
tory somewhere on the file system tree. Nothing special about it. It doesn't even have to
be an empty directory, though if you mount a device on a non-empty directory, you will
not be able to see the directory's previous contents until you unmount the device. For our
purposes, we will create a new directory:

[root@linuxbox ~]# mkdir /mnt/cdrom

Finally, we mount the CD-ROM at the new mount point. The -t option is used to specify
the file system type:

[root@linuxbox ~]# mount -t iso9660 /dev/hdc /mnt/cdrom

Afterward, we can examine the contents of the CD-ROM via the new mount point:

[root@linuxbox ~]# cd /mnt/cdrom

180

Preview from Notesale.co.uk

Page 204 of 537

Mounting And Unmounting Storage Devices

[root@linuxbox cdrom]# ls

Notice what happens when we try to unmount the CD-ROM:

[root@linuxbox cdrom]# umount /dev/hdc
umount: /mnt/cdrom: device is busy

Why is this? The reason is that we cannot unmount a device if the device is being used by
someone or some process. In this case, we changed our working directory to the mount
point for the CD-ROM, which causes the device to be busy. We can easily remedy the is-
sue by changing the working directory to something other than the mount point:

[root@linuxbox cdrom]# cd
[root@linuxbox ~]# umount /dev/hdc

Now the device unmounts successfully.

Why Unmounting Is Important

If you look at the output of the free command, which displays statistics about
memory usage, you will see a statistic called “buffers.” Computer systems are de-
signed to go as fast as possible. One of the impediments to system speed is slow
devices. Printers are a good example. Even the fastest printer is extremely slow
by computer standards. A computer would be very slow indeed if it had to stop
and wait for a printer to finish printing a page. In the early days of PCs (before
multi-tasking), this was a real problem. If you were working on a spreadsheet or
text document, the computer would stop and become unavailable every time you
printed. The computer would send the data to the printer as fast as the printer
could accept it, but it was very slow since printers don't print very fast. This prob-
lem was solved by the advent of the printer buffer, a device containing some
RAM memory that would sit between the computer and the printer. With the
printer buffer in place, the computer would send the printer output to the buffer
and it would quickly be stored in the fast RAM so the computer could go back to
work without waiting. Meanwhile, the printer buffer would slowly spool the data
to the printer from the buffer's memory at the speed at which the printer could ac-
cept it.

181

Preview from Notesale.co.uk

Page 205 of 537

15 – Storage Media

drives, we can manage those devices, too. Preparing a blank floppy for use is a two step
process. First, we perform a low-level format on the diskette, and then create a file sys-
tem. To accomplish the formatting, we use the fdformat program specifying the name
of the floppy device (usually /dev/fd0):

[me@linuxbox ~]$ sudo fdformat /dev/fd0
Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done
Verifying ... done

Next, we apply a FAT file system to the diskette with mkfs:

[me@linuxbox ~]$ sudo mkfs -t msdos /dev/fd0

Notice that we use the “msdos” file system type to get the older (and smaller) style file
allocation tables. After a diskette is prepared, it may be mounted like other devices.

Moving Data Directly To/From Devices

While we usually think of data on our computers as being organized into files, it is also
possible to think of the data in “raw” form. If we look at a disk drive, for example, we see
that it consists of a large number of “blocks” of data that the operating system sees as di-
rectories and files. However, if we could treat a disk drive as simply a large collection of
data blocks, we could perform useful tasks, such as cloning devices.

The dd program performs this task. It copies blocks of data from one place to another. It
uses a unique syntax (for historical reasons) and is usually used this way:

dd if=input_file of=output_file [bs=block_size [count=blocks]]

Let’s say we had two USB flash drives of the same size and we wanted to exactly copy
the first drive to the second. If we attached both drives to the computer and they are as-
signed to devices /dev/sdb and /dev/sdc respectively, we could copy everything on
the first drive to the second drive with the following:

dd if=/dev/sdb of=/dev/sdc

190

Preview from Notesale.co.uk

Page 214 of 537

Writing CD-ROM Images

Blanking A Re-Writable CD-ROM

Rewritable CD-RW media needs to be erased or blanked before it can be reused. To do
this, we can use wodim, specifying the device name for the CD writer and the type of
blanking to be performed. The wodim program offers several types. The most minimal
(and fastest) is the “fast” type:

wodim dev=/dev/cdrw blank=fast

Writing An Image

To write an image, we again use wodim, specifying the name of the optical media writer
device and the name of the image file:

wodim dev=/dev/cdrw image.iso

In addition to the device name and image file, wodim supports a very large set of op-
tions. Two common ones are “-v” for verbose output, and “-dao”, which writes the disc in
disc-at-once mode. This mode should be used if you are preparing a disc for commercial
reproduction. The default mode for wodim is track-at-once, which is useful for recording
music tracks.

Summing Up

In this chapter we have looked at the basic storage management tasks. There are, of
course, many more. Linux supports a vast array of storage devices and file system
schemes. It also offers many features for interoperability with other systems.

Further Reading

Take a look at the man pages of the commands we have covered. Some of them support
huge numbers of options and operations. Also, look for on-line tutorials for adding hard
drives to your Linux system (there are many) and working with optical media.

Extra Credit

It’s often useful to verify the integrity of an iso image that we have downloaded. In most
cases, a distributor of an iso image will also supply a checksum file. A checksum is the re-
sult of an exotic mathematical calculation resulting in a number that represents the con-

193

Preview from Notesale.co.uk

Page 217 of 537

Secure Communication With Remote Hosts

checking.
Host key verification failed.

This message is caused by one of two possible situations. First, an attacker may be at-
tempting a “man-in-the-middle” attack. This is rare, since everybody knows that ssh
alerts the user to this. The more likely culprit is that the remote system has been changed
somehow; for example, its operating system or SSH server has been reinstalled. In the in-
terests of security and safety however, the first possibility should not be dismissed out of
hand. Always check with the administrator of the remote system when this message oc-
curs.

After it has been determined that the message is due to a benign cause, it is safe to correct
the problem on the client side. This is done by using a text editor (vim perhaps) to re-
move the obsolete key from the ~/.ssh/known_hosts file. In the example message
above, we see this:

Offending key in /home/me/.ssh/known_hosts:1

This means that line one of the known_hosts file contains the offending key. Delete
this line from the file, and the ssh program will be able to accept new authentication cre-
dentials from the remote system.

Besides opening a shell session on a remote system, ssh also allows us to execute a sin-
gle command on a remote system. For example, to execute the free command on a re-
mote host named remote-sys and have the results displayed on the local system:

[me@linuxbox ~]$ ssh remote-sys free
me@twin4's password:
 total used free shared buffers cached

Mem: 775536 507184 268352 0 110068 154596

-/+ buffers/cache: 242520 533016
Swap: 1572856 0 1572856
[me@linuxbox ~]$

It’s possible to use this technique in more interesting ways, such as this example in which
we perform an ls on the remote system and redirect the output to a file on the local sys-
tem:

205

Preview from Notesale.co.uk

Page 229 of 537

Secure Communication With Remote Hosts

scp And sftp

The OpenSSH package also includes two programs that can make use of an SSH-en-
crypted tunnel to copy files across the network. The first, scp (secure copy) is used
much like the familiar cp program to copy files. The most notable difference is that the
source or destination pathnames may be preceded with the name of a remote host, fol-
lowed by a colon character. For example, if we wanted to copy a document named doc-
ument.txt from our home directory on the remote system, remote-sys, to the cur-
rent working directory on our local system, we could do this:

[me@linuxbox ~]$ scp remote-sys:document.txt .
me@remote-sys's password:
document.txt 100% 5581 5.5KB/s 00:00
[me@linuxbox ~]$

As with ssh, you may apply a username to the beginning of the remote host’s name if
the desired remote host account name does not match that of the local system:

[me@linuxbox ~]$ scp bob@remote-sys:document.txt .

The second SSH file-copying program is sftp which, as its name implies, is a secure re-
placement for the ftp program. sftp works much like the original ftp program that
we used earlier; however, instead of transmitting everything in cleartext, it uses an SSH
encrypted tunnel. sftp has an important advantage over conventional ftp in that it does
not require an FTP server to be running on the remote host. It only requires the SSH
server. This means that any remote machine that can connect with the SSH client can also
be used as a FTP-like server. Here is a sample session:

[me@linuxbox ~]$ sftp remote-sys
Connecting to remote-sys...
me@remote-sys's password:
sftp> ls
ubuntu-8.04-desktop-i386.iso
sftp> lcd Desktop
sftp> get ubuntu-8.04-desktop-i386.iso
Fetching /home/me/ubuntu-8.04-desktop-i386.iso to ubuntu-8.04-
desktop-i386.iso
/home/me/ubuntu-8.04-desktop-i386.iso 100% 699MB 7.4MB/s 01:35
sftp> bye

207

Preview from Notesale.co.uk

Page 231 of 537

17 – Searching For Files

have the file extension “.BAK” (which is often used to designate backup files), we could
use this command:

find ~ -type f -name '*.BAK' -delete

In this example, every file in the user’s home directory (and its subdirectories) is searched
for filenames ending in .BAK. When they are found, they are deleted.

Warning: It should go without saying that you should use extreme caution when
using the -delete action. Always test the command first by substituting the
-print action for -delete to confirm the search results.

Before we go on, let’s take another look at how the logical operators affect actions. Con-
sider the following command:

find ~ -type f -name '*.BAK' -print

As we have seen, this command will look for every regular file (-type f) whose name
ends with .BAK (-name '*.BAK') and will output the relative pathname of each
matching file to standard output (-print). However, the reason the command performs
the way it does is determined by the logical relationships between each of the tests and
actions. Remember, there is, by default, an implied -and relationship between each test
and action. We could also express the command this way to make the logical relation-
ships easier to see:

find ~ -type f -and -name '*.BAK' -and -print

With our command fully expressed, let’s look at how the logical operators affect its exe-
cution:

Test/Action Is Performed Only If...

-print -type f and -name '*.BAK' are true

-name ‘*.BAK’ -type f is true

-type f Is always performed, since it is the first test/action in an
-and relationship.

218

Preview from Notesale.co.uk

Page 242 of 537

17 – Searching For Files

Improving Efficiency

When the -exec action is used, it launches a new instance of the specified command
each time a matching file is found. There are times when we might prefer to combine all
of the search results and launch a single instance of the command. For example, rather
than executing the commands like this:

ls -l file1

ls -l file2

we may prefer to execute them this way:

ls -l file1 file2

thus causing the command to be executed only one time rather than multiple times. There
are two ways we can do this. The traditional way, using the external command xargs
and the alternate way, using a new feature in find itself. We’ll talk about the alternate
way first.

By changing the trailing semicolon character to a plus sign, we activate the ability of
find to combine the results of the search into an argument list for a single execution of
the desired command. Going back to our example, this:

find ~ -type f -name 'foo*' -exec ls -l '{}' ';'
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

will execute ls each time a matching file is found. By changing the command to:

find ~ -type f -name 'foo*' -exec ls -l '{}' +
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

we get the same results, but the system only has to execute the ls command once.

xargs

The xargs command performs an interesting function. It accepts input from standard in-
put and converts it into an argument list for a specified command. With our example, we
would use it like this:

220

Preview from Notesale.co.uk

Page 244 of 537

find – Find Files The Hard Way

find ~ -type f -name 'foo*' -print | xargs ls -l
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

Here we see the output of the find command piped into xargs which, in turn, con-
structs an argument list for the ls command and then executes it.

Note: While the number of arguments that can be placed into a command line is
quite large, it’s not unlimited. It is possible to create commands that are too long for
the shell to accept. When a command line exceeds the maximum length supported
by the system, xargs executes the specified command with the maximum number
of arguments possible and then repeats this process until standard input is ex-
hausted. To see the maximum size of the command line, execute xargs with the
--show-limits option.

Dealing With Funny Filenames

Unix-like systems allow embedded spaces (and even newlines!) in filenames.
This causes problems for programs like xargs that construct argument lists for
other programs. An embedded space will be treated as a delimiter, and the result-
ing command will interpret each space-separated word as a separate argument. To
overcome this, find and xarg allow the optional use of a null character as ar-
gument separator. A null character is defined in ASCII as the character repre-
sented by the number zero (as opposed to, for example, the space character, which
is defined in ASCII as the character represented by the number 32). The find
command provides the action -print0, which produces null-separated output,
and the xargs command has the --null option, which accepts null separated
input. Here’s an example:
find ~ -iname '*.jpg' -print0 | xargs --null ls -l
Using this technique, we can ensure that all files, even those containing embedded
spaces in their names, are handled correctly.

A Return To The Playground

It’s time to put find to some (almost) practical use. We’ll create a playground and try
out some of what we have learned.

First, let’s create a playground with lots of subdirectories and files:

221

Preview from Notesale.co.uk

Page 245 of 537

Compressing Files

nally, we decompressed the file back to its original form.

gzip can also be used in interesting ways via standard input and output:

[me@linuxbox ~]$ ls -l /etc | gzip > foo.txt.gz

This command creates a compressed version of a directory listing.

The gunzip program, which uncompresses gzip files, assumes that filenames end in the
extension .gz, so it’s not necessary to specify it, as long as the specified name is not in
conflict with an existing uncompressed file:

[me@linuxbox ~]$ gunzip foo.txt

If our goal were only to view the contents of a compressed text file, we could do this:

[me@linuxbox ~]$ gunzip -c foo.txt | less

Alternately, there is a program supplied with gzip, called zcat, that is equivalent to
gunzip with the -c option. It can be used like the cat command on gzip compressed
files:

[me@linuxbox ~]$ zcat foo.txt.gz | less

Tip: There is a zless program, too. It performs the same function as the pipeline
above.

bzip2

The bzip2 program, by Julian Seward, is similar to gzip, but uses a different compres-
sion algorithm that achieves higher levels of compression at the cost of compression
speed. In most regards, it works in the same fashion as gzip. A file compressed with
bzip2 is denoted with the extension .bz2:

229

Preview from Notesale.co.uk

Page 253 of 537

Archiving Files

ern versions of GNU tar support both gzip and bzip2 compression directly, with the use
of the z and j options, respectively. Using our previous example as a base, we can sim-
plify it this way:

[me@linuxbox ~]$ find playground -name 'file-A' | tar czf
playground.tgz -T -

If we had wanted to create a bzip2 compressed archive instead, we could have done this:

[me@linuxbox ~]$ find playground -name 'file-A' | tar cjf
playground.tbz -T -

By simply changing the compression option from z to j (and changing the output file’s
extension to .tbz to indicate a bzip2 compressed file) we enabled bzip2 compression.

Another interesting use of standard input and output with the tar command involves
transferring files between systems over a network. Imagine that we had two machines
running a Unix-like system equipped with tar and ssh. In such a scenario, we could
transfer a directory from a remote system (named remote-sys for this example) to our
local system:

[me@linuxbox ~]$ mkdir remote-stuff
[me@linuxbox ~]$ cd remote-stuff
[me@linuxbox remote-stuff]$ ssh remote-sys 'tar cf - Documents' | tar
xf -
me@remote-sys’s password:
[me@linuxbox remote-stuff]$ ls
Documents

Here we were able to copy a directory named Documents from the remote system re-
mote-sys to a directory within the directory named remote-stuff on the local sys-
tem. How did we do this? First, we launched the tar program on the remote system us-
ing ssh. You will recall that ssh allows us to execute a program remotely on a net-
worked computer and “see” the results on the local system—the standard output pro    -
duced on the remote system is sent to the local system for viewing. We can take advan-
tage of this by having tar create an archive (the c mode) and send it to standard output,
rather than a file (the f option with the dash argument), thereby transporting the archive
over the encrypted tunnel provided by ssh to the local system. On the local system, we
execute tar and have it expand an archive (the x mode) supplied from standard input

235

Preview from Notesale.co.uk

Page 259 of 537

POSIX Basic Vs. Extended Regular Expressions

Enter the IEEE (Institute of Electrical and Electronics Engineers). In the mid-
1980s, the IEEE began developing a set of standards that would define how Unix
(and Unix-like) systems would perform. These standards, formally known as
IEEE 1003, define the application programming interfaces (APIs), shell and utili-
ties that are to be found on a standard Unix-like system. The name “POSIX,”
which stands for Portable Operating System Interface (with the “X” added to the
end for extra snappiness), was suggested by Richard Stallman (yes, that Richard
Stallman), and was adopted by the IEEE.

Alternation

The first of the extended regular expression features we will discuss is called alternation,
which is the facility that allows a match to occur from among a set of expressions. Just as
a bracket expression allows a single character to match from a set of specified characters,
alternation allows matches from a set of strings or other regular expressions.

To demonstrate, we’ll use grep in conjunction with echo. First, let’s try a plain old
string match:

[me@linuxbox ~]$ echo "AAA" | grep AAA
AAA
[me@linuxbox ~]$ echo "BBB" | grep AAA
[me@linuxbox ~]$

A pretty straightforward example, in which we pipe the output of echo into grep and
see the results. When a match occurs, we see it printed out; when no match occurs, we
see no results.

Now we’ll add alternation, signified by the vertical-bar metacharacter:

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB'
AAA
[me@linuxbox ~]$ echo "BBB" | grep -E 'AAA|BBB'
BBB
[me@linuxbox ~]$ echo "CCC" | grep -E 'AAA|BBB'
[me@linuxbox ~]$

Here we see the regular expression 'AAA|BBB', which means “match either the string
AAA or the string BBB.” Notice that since this is an extended feature, we added the -E

255

Preview from Notesale.co.uk

Page 279 of 537

Slicing And Dicing

section to standard output. It can accept multiple file arguments or input from standard in-
put.

Specifying the section of the line to be extracted is somewhat awkward and is specified
using the following options:

Table 20-3: cut Selection Options

Option Description

-c char_list Extract the portion of the line defined by char_list. The list
may consist of one or more comma-separated numerical
ranges.

-f field_list Extract one or more fields from the line as defined by
field_list. The list may contain one or more fields or field
ranges separated by commas.

-d delim_char When -f is specified, use delim_char as the field delimiting
character. By default, fields must be separated by a single tab
character.

--complement Extract the entire line of text, except for those portions
specified by -c and/or -f.

As we can see, the way cut extracts text is rather inflexible. cut is best used to extract
text from files that are produced by other programs, rather than text directly typed by hu-
mans. We’ll take a look at our distros.txt file to see if it is “clean” enough to be a
good specimen for our cut examples. If we use cat with the -A option, we can see if
the file meets our requirements of tab-separated fields:

[me@linuxbox ~]$ cat -A distros.txt
SUSE^I10.2^I12/07/2006$
Fedora^I10^I11/25/2008$
SUSE^I11.0^I06/19/2008$
Ubuntu^I8.04^I04/24/2008$
Fedora^I8^I11/08/2007$
SUSE^I10.3^I10/04/2007$
Ubuntu^I6.10^I10/26/2006$
Fedora^I7^I05/31/2007$
Ubuntu^I7.10^I10/18/2007$
Ubuntu^I7.04^I04/19/2007$
SUSE^I10.1^I05/11/2006$
Fedora^I6^I10/24/2006$
Fedora^I9^I05/13/2008$

277

Preview from Notesale.co.uk

Page 301 of 537

20 – Text Processing

mail
news

Using the -d option, we are able to specify the colon character as the field delimiter.

paste

The paste command does the opposite of cut. Rather than extracting a column of text
from a file, it adds one or more columns of text to a file. It does this by reading multiple
files and combining the fields found in each file into a single stream on standard output.
Like cut, paste accepts multiple file arguments and/or standard input. To demonstrate
how paste operates, we will perform some surgery on our distros.txt file to pro-
duce a chronological list of releases.

From our earlier work with sort, we will first produce a list of distros sorted by date
and store the result in a file called distros-by-date.txt:

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt > dis
tros-by-date.txt

Next, we will use cut to extract the first two fields from the file (the distro name and
version), and store that result in a file named distro-versions.txt:

[me@linuxbox ~]$ cut -f 1,2 distros-by-date.txt > distros-versions.t
xt
[me@linuxbox ~]$ head distros-versions.txt
Fedora 10
Ubuntu 8.10
SUSE 11.0
Fedora 9
Ubuntu 8.04
Fedora 8
Ubuntu 7.10
SUSE 10.3
Fedora 7
Ubuntu 7.04

The final piece of preparation is to extract the release dates and store them a file named
distro-dates.txt:

280

Preview from Notesale.co.uk

Page 304 of 537

20 – Text Processing

ROT13: The Not-So-Secret Decoder Ring

One amusing use of tr is to perform ROT13 encoding of text. ROT13 is a trivial
type of encryption based on a simple substitution cipher. Calling ROT13 “encryp-
tion” is being generous; “text obfuscation” is more accurate. It is used sometimes
on text to obscure potentially offensive content. The method simply moves each
character 13 places up the alphabet. Since this is half way up the possible 26 char-
acters, performing the algorithm a second time on the text restores it to its original
form. To perform this encoding with tr:
echo "secret text" | tr a-zA-Z n-za-mN-ZA-M
frperg grkg

Performing the same procedure a second time results in the translation:
echo "frperg grkg" | tr a-zA-Z n-za-mN-ZA-M
secret text

A number of email programs and Usenet news readers support ROT13 encoding.
Wikipedia contains a good article on the subject:
http://en.wikipedia.org/wiki/ROT13

tr can perform another trick, too. Using the -s option, tr can “squeeze” (delete) re-
peated instances of a character:

[me@linuxbox ~]$ echo "aaabbbccc" | tr -s ab
abccc

Here we have a string containing repeated characters. By specifying the set “ab” to tr,
we eliminate the repeated instances of the letters in the set, while leaving the character
that is missing from the set (“c”) unchanged. Note that the repeating characters must be
adjoining. If they are not:

[me@linuxbox ~]$ echo "abcabcabc" | tr -s ab
abcabcabc

the squeezing will have no effect.

sed

The name sed is short for stream editor. It performs text editing on a stream of text, ei-

290

Preview from Notesale.co.uk

Page 314 of 537

Editing On The Fly

Fedora 8 11/08/2007

In this example, we print a range of lines, starting with line 1 and continuing to line 5. To
do this, we use the p command, which simply causes a matched line to be printed. For
this to be effective however, we must include the option -n (the no auto-print option) to
cause sed not to print every line by default.

Next, we’ll try a regular expression:

[me@linuxbox ~]$ sed -n '/SUSE/p' distros.txt
SUSE 10.2 12/07/2006
SUSE 11.0 06/19/2008
SUSE 10.3 10/04/2007
SUSE 10.1 05/11/2006

By including the slash-delimited regular expression /SUSE/, we are able to isolate the
lines containing it in much the same manner as grep.

Finally, we’ll try negation by adding an exclamation point (!) to the address:

[me@linuxbox ~]$ sed -n '/SUSE/!p' distros.txt
Fedora 10 11/25/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Here we see the expected result: all of the lines in the file except the ones matched by the
regular expression.

So far, we’ve looked at two of the sed editing commands, s and p. Here is a more com-
plete list of the basic editing commands:

Table 20-8: sed Basic Editing Commands

Command Description

293

Preview from Notesale.co.uk

Page 317 of 537

20 – Text Processing

= Output current line number.

a Append text after the current line.

d Delete the current line.

i Insert text in front of the current line.

p Print the current line. By default, sed prints every
line and only edits lines that match a specified
address within the file. The default behavior can
be overridden by specifying the -n option.

q Exit sed without processing any more lines. If the
-n option is not specified, output the current line.

Q Exit sed without processing any more lines.

s/regexp/replacement/ Substitute the contents of replacement wherever
regexp is found. replacement may include the
special character &, which is equivalent to the text
matched by regexp. In addition, replacement may
include the sequences \1 through \9, which are
the contents of the corresponding subexpressions
in regexp. For more about this, see the discussion
of back references below. After the trailing slash
following replacement, an optional flag may be
specified to modify the s command’s behavior.

y/set1/set2 Perform transliteration by converting characters
from set1 to the corresponding characters in set2.
Note that unlike tr, sed requires that both sets be
of the same length.

The s command is by far the most commonly used editing command. We will demon-
strate just some of its power by performing an edit on our distros.txt file. We dis-
cussed before how the date field in distros.txt was not in a “computer-friendly” for-
mat. While the date is formatted MM/DD/YYYY, it would be better (for ease of sorting)
if the format were YYYY-MM-DD. To perform this change on the file by hand would be
both time consuming and error prone, but with sed, this change can be performed in one
step:

[me@linuxbox ~]$ sed 's/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\

294

Preview from Notesale.co.uk

Page 318 of 537

21 – Formatting Output

21 – Formatting Output

In this chapter, we continue our look at text-related tools, focusing on programs that are
used to format text output, rather than changing the text itself. These tools are often used
to prepare text for eventual printing, a subject that we will cover in the next chapter. The
programs that we will cover in this chapter include:

● nl – Number lines

● fold – Wrap each line to a specified length

● fmt – A simple text formatter

● pr – Prepare text for printing

● printf – Format and print data

● groff – A document formatting system

Simple Formatting Tools

We’ll look at some of the simple formatting tools first. These are mostly single-purpose
programs, and a bit unsophisticated in what they do, but they can be used for small tasks
and as parts of pipelines and scripts.

nl – Number Lines

The nl program is a rather arcane tool used to perform a simple task. It numbers lines. In
its simplest use, it resembles cat -n:

[me@linuxbox ~]$ nl distros.txt | head
 1 SUSE 10.2 12/07/2006
 2 Fedora 10 11/25/2008
 3 SUSE 11.0 06/19/2008
 4 Ubuntu 8.04 04/24/2008
 5 Fedora 8 11/08/2007
 6 SUSE 10.3 10/04/2007
 7 Ubuntu 6.10 10/26/2006

305

Preview from Notesale.co.uk

Page 329 of 537

21 – Formatting Output

 8 Fedora 7 05/31/2007
 9 Ubuntu 7.10 10/18/2007
 10 Ubuntu 7.04 04/19/2007

Like cat, nl can accept either multiple files as command line arguments, or standard in-
put. However, nl has a number of options and supports a primitive form of markup to al-
low more complex kinds of numbering.

nl supports a concept called “logical pages” when numbering. This allows nl to reset
(start over) the numerical sequence when numbering. Using options, it is possible to set
the starting number to a specific value and, to a limited extent, its format. A logical page
is further broken down into a header, body, and footer. Within each of these sections, line
numbering may be reset and/or be assigned a different style. If nl is given multiple files,
it treats them as a single stream of text. Sections in the text stream are indicated by the
presence of some rather odd-looking markup added to the text:

Table 21-1: nl Markup

Markup Meaning

\:\:\: Start of logical page header

\:\: Start of logical page body

\: Start of logical page footer

Each of the above markup elements must appear alone on its own line. After processing a
markup element, nl deletes it from the text stream.

Here are the common options for nl:

Table 21-2: Common nl Options

Option Meaning

-b style Set body numbering to style, where style is one of the following:
a = number all lines
t = number only non-blank lines. This is the default.
n = none
pregexp = number only lines matching basic regular expression
regexp.

-f style Set footer numbering to style. Default is n (none).

-h style Set header numbering to style. Default is n (none).

306

Preview from Notesale.co.uk

Page 330 of 537

21 – Formatting Output

signs negative numbers.

width A number specifying the minimum field width.

.precision For floating point numbers, specify the number of digits of
precision to be output after the decimal point. For string
conversion, precision specifies the number of characters to
output.

Here are some examples of different formats in action:

Table 21-6: print Conversion Specification Examples

Argument Format Result Notes

380 "%d" 380 Simple formatting of an
integer.

380 "%#x" 0x17c Integer formatted as a
hexadecimal number using
the “alternate format” flag.

380 "%05d" 00380 Integer formatted with
leading zeros (padding)
and a minimum field width
of five characters.

380 "%05.5f" 380.00000 Number formatted as a
floating point number with
padding and five decimal
places of precision. Since
the specified minimum
field width (5) is less than
the actual width of the
formatted number, the
padding has no effect.

380 "%010.5f" 0380.00000 By increasing the
minimum field width to 10
the padding is now visible.

380 "%+d" +380 The + flag signs a positive
number.

380 "%-d" 380 The - flag left aligns the
formatting.

316

Preview from Notesale.co.uk

Page 340 of 537

21 – Formatting Output

ple tasks, but what about larger jobs? One of the reasons that Unix became a popular op-
erating system among technical and scientific users (aside from providing a powerful
multitasking, multiuser environment for all kinds of software development) is that it of-
fered tools that could be used to produce many types of documents, particularly scientific
and academic publications. In fact, as the GNU documentation describes, document
preparation was instrumental to the development of Unix:

The first version of UNIX was developed on a PDP-7 which was sitting around Bell
Labs. In 1971 the developers wanted to get a PDP-11 for further work on the
operating system. In order to justify the cost for this system, they proposed that they
would implement a document formatting system for the AT&T patents division. This
first formatting program was a reimplementation of McIllroy's `roff', written by J.
F. Ossanna.

Two main families of document formatters dominate the field: those descended from the
original roff program, including nroff and troff, and those based on Donald
Knuth’s TEX (pronounced “tek”) typesetting system. And yes, the dropped “E” in the
middle is part of its name.

The name “roff” is derived from the term “run off” as in, “I’ll run off a copy for you.”
The nroff program is used to format documents for output to devices that use
monospaced fonts, such as character terminals and typewriter-style printers. At the time
of its introduction, this included nearly all printing devices attached to computers. The
later troff program formats documents for output on typesetters, devices used to pro-
duce “camera-ready” type for commercial printing. Most computer printers today are able
to simulate the output of typesetters. The roff family also includes some other programs
that are used to prepare portions of documents. These include eqn (for mathematical
equations) and tbl (for tables).

The TEX system (in stable form) first appeared in 1989 and has, to some degree, dis-
placed troff as the tool of choice for typesetter output. We won’t be covering TEX
here, due both to its complexity (there are entire books about it) and to the fact that it is
not installed by default on most modern Linux systems.

Tip: For those interested in installing TEX, check out the texlive package
which can be found in most distribution repositories, and the LyX graphical content
editor.

groff

groff is a suite of programs containing the GNU implementation of troff. It also in-
cludes a script that is used to emulate nroff and the rest of the roff family as well.

318

Preview from Notesale.co.uk

Page 342 of 537

Compiling A C Program

What’s important here is that there are no error messages. If there were, the configuration
failed, and the program will not build until the errors are corrected.

We see configure created several new files in our source directory. The most impor-
tant one is Makefile. Makefile is a configuration file that instructs the make pro-
gram exactly how to build the program. Without it, make will refuse to run. Makefile
is an ordinary text file, so we can view it:

[me@linuxbox diction-1.11]$ less Makefile

The make program takes as input a makefile (which is normally named Makefile), that
describes the relationships and dependencies among the components that comprise the
finished program.

The first part of the makefile defines variables that are substituted in later sections of the
makefile. For example we see the line:

CC= gcc

which defines the C compiler to be gcc. Later in the makefile, we see one instance
where it gets used:

diction: diction.o sentence.o misc.o getopt.o getopt1.o
 $(CC) -o $@ $(LDFLAGS) diction.o sentence.o misc.o \
 getopt.o getopt1.o $(LIBS)

A substitution is performed here, and the value $(CC) is replaced by gcc at run time.

Most of the makefile consists of lines, which define a target, in this case the executable
file diction, and the files on which it is dependent. The remaining lines describe the
command(s) needed to create the target from its components. We see in this example that
the executable file diction (one of the final end products) depends on the existence of
diction.o, sentence.o, misc.o, getopt.o, and getopt1.o. Later on, in the
makefile, we see definitions of each of these as targets:

diction.o: diction.c config.h getopt.h misc.h sentence.h
getopt.o: getopt.c getopt.h getopt_int.h
getopt1.o: getopt1.c getopt.h getopt_int.h
misc.o: misc.c config.h misc.h

347

Preview from Notesale.co.uk

Page 371 of 537

24 – Writing Your First Script

turns on the option to highlight search results. Say we search for the word “echo.”
With this option on, each instance of the word will be highlighted.
:set tabstop=4
sets the number of columns occupied by a tab character. The default is 8 columns.
Setting the value to 4 (which is a common practice) allows long lines to fit more
easily on the screen.
:set autoindent
turns on the “auto indent” feature. This causes vim to indent a new line the same
amount as the line just typed. This speeds up typing on many kinds of program-
ming constructs. To stop indentation, type Ctrl-d.
These changes can be made permanent by adding these commands (without the
leading colon characters) to your ~/.vimrc file.

Summing Up

In this first chapter of scripting, we have looked at how scripts are written and made to
easily execute on our system. We also saw how we may use various formatting tech-
niques to improve the readability (and thus, the maintainability) of our scripts. In future
chapters, ease of maintenance will come up again and again as a central principle in good
script writing.

Further Reading

● For “Hello World” programs and examples in various programming languages,
see:
http://en.wikipedia.org/wiki/Hello_world

● This Wikipedia article talks more about the shebang mechanism:
http://en.wikipedia.org/wiki/Shebang_(Unix)

360

Preview from Notesale.co.uk

Page 384 of 537

25 – Starting A Project

25 – Starting A Project

Starting with this chapter, we will begin to build a program. The purpose of this project is
to see how various shell features are used to create programs and, more importantly, cre-
ate good programs.

The program we will write is a report generator. It will present various statistics about
our system and its status, and will produce this report in HTML format, so we can view it
with a web browser such as Firefox or Chrome.

Programs are usually built up in a series of stages, with each stage adding features and
capabilities. The first stage of our program will produce a very minimal HTML page that
contains no system information. That will come later.

First Stage: Minimal Document

The first thing we need to know is the format of a well-formed HTML document. It looks
like this:

<HTML>
<HEAD>

<TITLE>Page Title</TITLE>
</HEAD>
<BODY>

Page body.
</BODY>

</HTML>

If we enter this into our text editor and save the file as foo.html, we can use the fol-
lowing URL in Firefox to view the file:

file:///home/username/foo.html

The first stage of our program will be able to output this HTML file to standard output.
We can write a program to do this pretty easily. Let’s start our text editor and create a new
file named ~/bin/sys_info_page:

361

Preview from Notesale.co.uk

Page 385 of 537

25 – Starting A Project

Try `cp --help' for more information.

We assign values to two variables, foo and foo1. We then perform a cp, but misspell
the name of the second argument. After expansion, the cp command is only sent one ar-
gument, though it requires two.

There are some rules about variable names:

1. Variable names may consist of alphanumeric characters (letters and numbers) and
underscore characters.

2. The first character of a variable name must be either a letter or an underscore.

3. Spaces and punctuation symbols are not allowed.

The word “variable” implies a value that changes, and in many applications, variables are
used this way. However, the variable in our application, title, is used as a constant. A
constant is just like a variable in that it has a name and contains a value. The difference is
that the value of a constant does not change. In an application that performs geometric
calculations, we might define PI as a constant, and assign it the value of 3.1415, in-
stead of using the number literally throughout our program. The shell makes no distinc-
tion between variables and constants; they are mostly for the programmer’s convenience.
A common convention is to use uppercase letters to designate constants and lower case
letters for true variables. We will modify our script to comply with this convention:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"

echo "<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 </BODY>
</HTML>"

We also took the opportunity to jazz up our title by adding the value of the shell variable
HOSTNAME. This is the network name of the machine.

366

Preview from Notesale.co.uk

Page 390 of 537

Variables And Constants

Note: The shell actually does provide a way to enforce the immutability of con-
stants, through the use of the declare builtin command with the -r (read-only)
option. Had we assigned TITLE this way:

declare -r TITLE="Page Title"

the shell would prevent any subsequent assignment to TITLE. This feature is rarely
used, but it exists for very formal scripts.

Assigning Values To Variables And Constants

Here is where our knowledge of expansion really starts to pay off. As we have seen, vari-
ables are assigned values this way:

variable=value

where variable is the name of the variable and value is a string. Unlike some other pro-
gramming languages, the shell does not care about the type of data assigned to a variable;
it treats them all as strings. You can force the shell to restrict the assignment to integers
by using the declare command with the -i option, but, like setting variables as read-
only, this is rarely done.

Note that in an assignment, there must be no spaces between the variable name, the
equals sign, and the value. So what can the value consist of? Anything that we can ex-
pand into a string:

a=z # Assign the string "z" to variable a.
b="a string" # Embedded spaces must be within quotes.
c="a string and $b" # Other expansions such as variables can be

expanded into the assignment.
d=$(ls -l foo.txt) # Results of a command.
e=$((5 * 7)) # Arithmetic expansion.
f="\t\ta string\n" # Escape sequences such as tabs and newlines.

Multiple variable assignments may be done on a single line:

a=5 b="a string"

During expansion, variable names may be surrounded by optional curly braces “{}”. This
is useful in cases where a variable name becomes ambiguous due to its surrounding con-

367

Preview from Notesale.co.uk

Page 391 of 537

Here Documents

mand. There is a third way called a here document or here script. A here document is an
additional form of I/O redirection in which we embed a body of text into our script and
feed it into the standard input of a command. It works like this:

command << token

text

token

where command is the name of command that accepts standard input and token is a string
used to indicate the end of the embedded text. We’ll modify our script to use a here docu-
ment:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_
<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 <P>$TIMESTAMP</P>
 </BODY>
</HTML>
EOF

Instead of using echo, our script now uses cat and a here document. The string _EOF_
(meaning “End Of File,” a common convention) was selected as the token, and marks the
end of the embedded text. Note that the token must appear alone and that there must not
be trailing spaces on the line.

So what’s the advantage of using a here document? It’s mostly the same as echo, except
that, by default, single and double quotes within here documents lose their special mean-
ing to the shell. Here is a command line example:

[me@linuxbox ~]$ foo="some text"
[me@linuxbox ~]$ cat << _EOF_
> $foo

369

Preview from Notesale.co.uk

Page 393 of 537

26 – Top-Down Design

</HEAD>
<BODY>

<H1>System Information Report For linuxbox</H1>
<P>Generated 03/19/2009 04:02:10 PM EDT, by me</P>

 </BODY>
</HTML>

we see that there are some blank lines in our output after the timestamp, but we can’t be
sure of the cause. If we change the functions to include some feedback:

report_uptime () {
 echo "Function report_uptime executed."
 return
}

report_disk_space () {
 echo "Function report_disk_space executed."
 return
}

report_home_space () {
 echo "Function report_home_space executed."
 return
}

and run the script again:

[me@linuxbox ~]$ sys_info_page
<HTML>

<HEAD>
<TITLE>System Information Report For linuxbox</TITLE>

 </HEAD>
<BODY>

<H1>System Information Report For linuxbox</H1>
<P>Generated 03/20/2009 05:17:26 AM EDT, by me</P>
Function report_uptime executed.
Function report_disk_space executed.
Function report_home_space executed.

</BODY>
</HTML>

378

Preview from Notesale.co.uk

Page 402 of 537

27 – Flow Control: Branching With if

27 – Flow Control: Branching With if

In the last chapter, we were presented with a problem. How can we make our report-gen-
erator script adapt to the privileges of the user running the script? The solution to this
problem will require us to find a way to “change directions” within our script, based on
the results of a test. In programming terms, we need the program to branch.

Let’s consider a simple example of logic expressed in pseudocode, a simulation of a com-
puter language intended for human consumption:

X = 5

If X = 5, then:

Say “X equals 5.”

Otherwise:

Say “X is not equal to 5.”

This is an example of a branch. Based on the condition, “Does X = 5?” do one thing,
“Say X equals 5,” otherwise do another thing, “Say X is not equal to 5.”

if

Using the shell, we can code the logic above as follows:

x=5

if [$x -eq 5]; then
echo "x equals 5."

else
echo "x does not equal 5."

fi

or we can enter it directly at the command line (slightly shortened):

381

Preview from Notesale.co.uk

Page 405 of 537

Exit Status

In this example, we execute the ls command twice. The first time, the command exe-
cutes successfully. If we display the value of the parameter $?, we see that it is zero. We
execute the ls command a second time, producing an error, and examine the parameter
$? again. This time it contains a 2, indicating that the command encountered an error.
Some commands use different exit status values to provide diagnostics for errors, while
many commands simply exit with a value of one when they fail. Man pages often include
a section entitled “Exit Status,” describing what codes are used. However, a zero always
indicates success.

The shell provides two extremely simple builtin commands that do nothing except termi-
nate with either a zero or one exit status. The true command always executes success-
fully and the false command always executes unsuccessfully:

[me@linuxbox ~]$ true
[me@linuxbox ~]$ echo $?
0
[me@linuxbox ~]$ false
[me@linuxbox ~]$ echo $?
1

We can use these commands to see how the if statement works. What the if statement
really does is evaluate the success or failure of commands:

[me@linuxbox ~]$ if true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if false; then echo "It's true."; fi
[me@linuxbox ~]$

The command echo "It's true." is executed when the command following if exe-
cutes successfully, and is not executed when the command following if does not execute
successfully. If a list of commands follows if, the last command in the list is evaluated:

[me@linuxbox ~]$ if false; true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if true; false; then echo "It's true."; fi
[me@linuxbox ~]$

383

Preview from Notesale.co.uk

Page 407 of 537

27 – Flow Control: Branching With if

script this way:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if [$INT -eq 0]; then

echo "INT is zero."
else

if [$INT -lt 0]; then
echo "INT is negative."

else
echo "INT is positive."

fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

By applying the regular expression, we are able to limit the value of INT to only strings
that begin with an optional minus sign, followed by one or more numerals. This expres-
sion also eliminates the possibility of empty values.

Another added feature of [[]] is that the == operator supports pattern matching the
same way pathname expansion does. For example:

[me@linuxbox ~]$ FILE=foo.bar
[me@linuxbox ~]$ if [[$FILE == foo.*]]; then
> echo "$FILE matches pattern 'foo.*'"
> fi
foo.bar matches pattern 'foo.*'

This makes [[]] useful for evaluating file and pathnames.

390

Preview from Notesale.co.uk

Page 414 of 537

27 – Flow Control: Branching With if

nary command, and it deals only with integers, it is able to recognize variables by name
and does not require expansion to be performed. We’ll discuss (()) and the related
arithmetic expansion further in Chapter 34.

Combining Expressions

It’s also possible to combine expressions to create more complex evaluations. Expres-
sions are combined by using logical operators. We saw these in Chapter 17, when we
learned about the find command. There are three logical operations for test and
[[]]. They are AND, OR and NOT. test and [[]] use different operators to repre-
sent these operations :

Table 27-4: Logical Operators

Operation test [[]] and (())

AND -a &&

OR -o ||

NOT ! !

Here’s an example of an AND operation. The following script determines if an integer is
within a range of values:

#!/bin/bash

test-integer3: determine if an integer is within a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["$INT" =~ ^-?[0-9]+$]]; then
if [[INT -ge MIN_VAL && INT -le MAX_VAL]]; then

echo "$INT is within $MIN_VAL to $MAX_VAL."
else

echo "$INT is out of range."
fi

else
 echo "INT is not an integer." >&2
 exit 1
fi

392

Preview from Notesale.co.uk

Page 416 of 537

28 – Reading Keyboard Input

read – Read Values From Standard Input

The read builtin command is used to read a single line of standard input. This command
can be used to read keyboard input or, when redirection is employed, a line of data from a
file. The command has the following syntax:

read [-options] [variable...]

where options is one or more of the available options listed below and variable is the
name of one or more variables used to hold the input value. If no variable name is sup-
plied, the shell variable REPLY contains the line of data.

Basically, read assigns fields from standard input to the specified variables. If we mod-
ify our integer evaluation script to use read, it might look like this:

#!/bin/bash

read-integer: evaluate the value of an integer.

echo -n "Please enter an integer -> "
read int

if [["$int" =~ ^-?[0-9]+$]]; then
if [$int -eq 0]; then

echo "$int is zero."
else

if [$int -lt 0]; then
echo "$int is negative."

else
echo "$int is positive."

fi
if [$((int % 2)) -eq 0]; then

echo "$int is even."
else

echo "$int is odd."
fi

fi
else

echo "Input value is not an integer." >&2
exit 1

fi

We use echo with the -n option (which suppresses the trailing newline on output) to
display a prompt, and then use read to input a value for the variable int. Running this
script results in this:

398

Preview from Notesale.co.uk

Page 422 of 537

28 – Reading Keyboard Input

It's possible to supply the user with a default response using the -e and -i options to-
gether:

#!/bin/bash

read-default: supply a default value if user presses Enter key.

read -e -p "What is your user name? " -i $USER
echo "You answered: '$REPLY'"

In this script, we prompt the user to enter his/her user name and use the environment vari-
able USER to provide a default value. When the script is run it displays the default string
and if the user simply presses the Enter key, read will assign the default string to the
REPLY variable.

[me@linuxbox ~]$ read-default
What is your user name? me
You answered: 'me'

IFS

Normally, the shell performs word splitting on the input provided to read. As we have
seen, this means that multiple words separated by one or more spaces become separate
items on the input line, and are assigned to separate variables by read. This behavior is
configured by a shell variable named IFS (for Internal Field Separator). The default
value of IFS contains a space, a tab, and a newline character, each of which will separate
items from one another.

We can adjust the value of IFS to control the separation of fields input to read. For ex-
ample, the /etc/passwd file contains lines of data that use the colon character as a
field separator. By changing the value of IFS to a single colon, we can use read to input
the contents of /etc/passwd and successfully separate fields into different variables.
Here we have a script that does just that:

#!/bin/bash

read-ifs: read fields from a file

FILE=/etc/passwd

402

Preview from Notesale.co.uk

Page 426 of 537

Syntactic Errors

#!/bin/bash

trouble: script to demonstrate common errors

number=

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

Running the script with this change results in the output:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 7: [: =: unary operator expected
 Number is not equal to 1.

We get this rather cryptic error message, followed by the output of the second echo
command. The problem is the expansion of the number variable within the test com-
mand. When the command:

[$number = 1]

undergoes expansion with number being empty, the result is this:

[= 1]

which is invalid and the error is generated. The = operator is a binary operator (it requires
a value on each side), but the first value is missing, so the test command expects a
unary operator (such as -z) instead. Further, since the test failed (because of the error),
the if command receives a non-zero exit code and acts accordingly, and the second
echo command is executed.

This problem can be corrected by adding quotes around the first argument in the test
command:

["$number" = 1]

419

Preview from Notesale.co.uk

Page 443 of 537

31 – Flow Control: Branching With case

terminate each action, so now we can do this:

#!/bin/bash

case4-2: test a character

read -n 1 -p "Type a character > "
echo
case $REPLY in
 [[:upper:]]) echo "'$REPLY' is upper case." ;;&
 [[:lower:]]) echo "'$REPLY' is lower case." ;;&
 [[:alpha:]]) echo "'$REPLY' is alphabetic." ;;&
 [[:digit:]]) echo "'$REPLY' is a digit." ;;&
 [[:graph:]]) echo "'$REPLY' is a visible character." ;;&
 [[:punct:]]) echo "'$REPLY' is a punctuation symbol." ;;&
 [[:space:]]) echo "'$REPLY' is a whitespace character." ;;&
 [[:xdigit:]]) echo "'$REPLY' is a hexadecimal digit." ;;&
esac

When we run this script, we get this:

[me@linuxbox ~]$ case4-2
Type a character > a
'a' is lower case.
'a' is alphabetic.
'a' is a visible character.
'a' is a hexadecimal digit.

The addition of the ";;&" syntax allows case to continue on to the next test rather than
simply terminating.

Summing Up

The case command is a handy addition to our bag of programming tricks. As we will
see in the next chapter, it’s the perfect tool for handling certain types of problems.

Further Reading

● The Bash Reference Manual section on Conditional Constructs describes the
case command in detail:
http://tiswww.case.edu/php/chet/bash/bashref.html#SEC21

● The Advanced Bash-Scripting Guide provides further examples of case applica-

434

Preview from Notesale.co.uk

Page 458 of 537

Further Reading

tions:
http://tldp.org/LDP/abs/html/testbranch.html

435

Preview from Notesale.co.uk

Page 459 of 537

32 – Positional Parameters

interactive=
filename=

while [[-n $1]]; do
case $1 in

-f | --file) shift
filename=$1
;;

-i | --interactive) interactive=1
;;

-h | --help) usage
exit
;;

*) usage >&2
exit 1
;;

esac
shift

done

interactive mode

if [[-n $interactive]]; then
while true; do

read -p "Enter name of output file: " filename
if [[-e $filename]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] > "
case $REPLY in

Y|y) break
;;

Q|q) echo "Program terminated."
exit
;;

*) continue
;;

esac
fi

done
fi

output html page

if [[-n $filename]]; then
if touch $filename && [[-f $filename]]; then

write_html_page > $filename
else

echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

fi
else

448

Preview from Notesale.co.uk

Page 472 of 537

for: Traditional Shell Form

The really powerful feature of for is the number of interesting ways we can create the
list of words. For example, through brace expansion:

[me@linuxbox ~]$ for i in {A..D}; do echo $i; done
A
B
C
D

or pathname expansion:

[me@linuxbox ~]$ for i in distros*.txt; do echo $i; done
distros-by-date.txt
distros-dates.txt
distros-key-names.txt
distros-key-vernums.txt
distros-names.txt
distros.txt
distros-vernums.txt
distros-versions.txt

or command substitution:

#!/bin/bash

longest-word : find longest string in a file

while [[-n $1]]; do
if [[-r $1]]; then

max_word=
max_len=0
for i in $(strings $1); do

len=$(echo $i | wc -c)
if ((len > max_len)); then

max_len=$len
max_word=$i

fi
done
echo "$1: '$max_word' ($max_len characters)"

fi
shift

done

451

Preview from Notesale.co.uk

Page 475 of 537

34 – Strings And Numbers

max_len=$len
max_word=$j

fi
done
echo "$i: '$max_word' ($max_len characters)"

fi
shift

done

Next, we will compare the efficiency of the two versions by using the time command:

[me@linuxbox ~]$ time longest-word2 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38
characters)

real 0m3.618s
user 0m1.544s
sys 0m1.768s
[me@linuxbox ~]$ time longest-word3 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38
characters)

real 0m0.060s
user 0m0.056s
sys 0m0.008s

The original version of the script takes 3.618 seconds to scan the text file, while the new
version, using parameter expansion, takes only 0.06 seconds—a very significant im    -
provement.

Case Conversion

Recent versions of bash have support for upper/lowercase conversion of strings. bash
has four parameter expansions and two options to the declare command to support it.

So what is case conversion good for? Aside from the obvious aesthetic value, it has an
important role in programming. Let's consider the case of a database look-up. Imagine
that a user has entered a string into a data input field that we want to look up in a data-
base. It's possible the user will enter the value in all uppercase letters or lowercase letters
or a combination of both. We certainly don't want to populate our database with every
possible permutation of upper and lower case spellings. What to do?

A common approach to this problem is to normalize the user's input. That is, convert it
into a standardized form before we attempt the database look-up. We can do this by con-

462

Preview from Notesale.co.uk

Page 486 of 537

34 – Strings And Numbers

<< Left bitwise shift. Shift all the bits in a number to the left.

>> Right bitwise shift. Shift all the bits in a number to the right.

& Bitwise AND. Perform an AND operation on all the bits in two
numbers.

| Bitwise OR. Perform an OR operation on all the bits in two
numbers.

^ Bitwise XOR. Perform an exclusive OR operation on all the
bits in two numbers.

Note that there are also corresponding assignment operators (for example, <<=) for all
but bitwise negation.

Here we will demonstrate producing a list of powers of 2, using the left bitwise shift op-
erator:

[me@linuxbox ~]$ for ((i=0;i<8;++i)); do echo $((1<<i)); done
1
2
4
8
16
32
64
128

Logic

As we discovered in Chapter 27, the (()) compound command supports a variety of
comparison operators. There are a few more that can be used to evaluate logic. Here is
the complete list:

Table 34-6: Comparison Operators

Operator Description

<= Less than or equal to

>= Greater than or equal to

< Less than

> Greater than

470

Preview from Notesale.co.uk

Page 494 of 537

Arithmetic Evaluation And Expansion

== Equal to

!= Not equal to

&& Logical AND

|| Logical OR

expr1?expr2:expr3 Comparison (ternary) operator. If expression expr1
evaluates to be non-zero (arithmetic true) then expr2,
else expr3.

When used for logical operations, expressions follow the rules of arithmetic logic; that is,
expressions that evaluate as zero are considered false, while non-zero expressions are
considered true. The (()) compound command maps the results into the shell’s normal
exit codes:

[me@linuxbox ~]$ if ((1)); then echo "true"; else echo "false"; fi
true
[me@linuxbox ~]$ if ((0)); then echo "true"; else echo "false"; fi
false

The strangest of the logical operators is the ternary operator. This operator (which is
modeled after the one in the C programming language) performs a standalone logical test.
It can be used as a kind of if/then/else statement. It acts on three arithmetic expressions
(strings won’t work), and if the first expression is true (or non-zero) the second expres-
sion is performed. Otherwise, the third expression is performed. We can try this on the
command line:

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a
1
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a
0

Here we see a ternary operator in action. This example implements a toggle. Each time
the operator is performed, the value of the variable a switches from zero to one or vice
versa.

Please note that performing assignment within the expressions is not straightforward.

471

Preview from Notesale.co.uk

Page 495 of 537

35 – Arrays

[5]=Fri [6]=Sat)

Accessing Array Elements

So what are arrays good for? Just as many data-management tasks can be performed with
a spreadsheet program, many programming tasks can be performed with arrays.

Let’s consider a simple data-gathering and presentation example. We will construct a
script that examines the modification times of the files in a specified directory. From this
data, our script will output a table showing at what hour of the day the files were last
modified. Such a script could be used to determine when a system is most active. This
script, called hours, produces this result:

[me@linuxbox ~]$ hours .
Hour Files Hour Files
---- ----- ---- -----
00 0 12 11
01 1 13 7
02 0 14 1
03 0 15 7
04 1 16 6
05 1 17 5
06 6 18 4
07 3 19 4
08 1 20 1
09 14 21 0
10 2 22 0
11 5 23 0

Total files = 80

We execute the hours program, specifying the current directory as the target. It pro-
duces a table showing, for each hour of the day (0-23), how many files were last modi-
fied. The code to produce this is as follows:

#!/bin/bash

hours : script to count files by modification time

usage () {
echo "usage: $(basename $0) directory" >&2

}

480

Preview from Notesale.co.uk

Page 504 of 537

35 – Arrays

[me@linuxbox ~]$ foo=(a b c)
[me@linuxbox ~]$ echo ${foo[@]}
a b c
[me@linuxbox ~]$ foo+=(d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f

Sorting An Array

Just as with spreadsheets, it is often necessary to sort the values in a column of data. The
shell has no direct way of doing this, but it's not hard to do with a little coding:

#!/bin/bash

array-sort : Sort an array

a=(f e d c b a)

echo "Original array: ${a[@]}"
a_sorted=($(for i in "${a[@]}"; do echo $i; done | sort))
echo "Sorted array: ${a_sorted[@]}"

When executed, the script produces this:

[me@linuxbox ~]$ array-sort
Original array: f e d c b a
Sorted array: a b c d e f

The script operates by copying the contents of the original array (a) into a second array
(a_sorted) with a tricky piece of command substitution. This basic technique can be
used to perform many kinds of operations on the array by changing the design of the
pipeline.

Deleting An Array

To delete an array, use the unset command:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f

484

Preview from Notesale.co.uk

Page 508 of 537

Group Commands And Subshells

array[@]}" expansion which expands into the list of array indexes rather than the list of
array elements.

Process Substitution

While they look similar and can both be used to combine streams for redirection, there is
an important difference between group commands and subshells. Whereas a group com-
mand executes all of its commands in the current shell, a subshell (as the name suggests)
executes its commands in a child copy of the current shell. This means that the environ-
ment is copied and given to a new instance of the shell. When the subshell exits, the copy
of the environment is lost, so any changes made to the subshell’s environment (including
variable assignment) is lost as well. Therefore, in most cases, unless a script requires a
subshell, group commands are preferable to subshells. Group commands are both faster
and require less memory.

We saw an example of the subshell environment problem in Chapter 28, when we discov-
ered that a read command in a pipeline does not work as we might intuitively expect. To
recap, if we construct a pipeline like this:

echo "foo" | read
echo $REPLY

The content of the REPLY variable is always empty because the read command is exe-
cuted in a subshell, and its copy of REPLY is destroyed when the subshell terminates.

Because commands in pipelines are always executed in subshells, any command that as-
signs variables will encounter this issue. Fortunately, the shell provides an exotic form of
expansion called process substitution that can be used to work around this problem.

Process substitution is expressed in two ways:

For processes that produce standard output:

<(list)

or, for processes that intake standard input:

>(list)

where list is a list of commands.

To solve our problem with read, we can employ process substitution like this:

read < <(echo "foo")
echo $REPLY

491

Preview from Notesale.co.uk

Page 515 of 537

Traps

for i in {1..5}; do
echo "Iteration $i of 5"
sleep 5

done

This script features two trap commands, one for each signal. Each trap, in turn, speci-
fies a shell function to be executed when the particular signal is received. Note the inclu-
sion of an exit command in each of the signal-handling functions. Without an exit,
the script would continue after completing the function.

When the user presses Ctrl-c during the execution of this script, the results look like
this:

[me@linuxbox ~]$ trap-demo2
Iteration 1 of 5
Iteration 2 of 5
Script interrupted.

Temporary Files

One reason signal handlers are included in scripts is to remove temporary files
that the script may create to hold intermediate results during execution. There is
something of an art to naming temporary files. Traditionally, programs on Unix-
like systems create their temporary files in the /tmp directory, a shared directory
intended for such files. However, since the directory is shared, this poses certain
security concerns, particularly for programs running with superuser privileges.
Aside from the obvious step of setting proper permissions for files exposed to all
users of the system, it is important to give temporary files non-predictable file-
names. This avoids an exploit known as a temp race attack. One way to create a
non-predictable (but still descriptive) name is to do something like this:
tempfile=/tmp/$(basename $0).$$.$RANDOM

This will create a filename consisting of the program’s name, followed by its
process ID (PID), followed by a random integer. Note, however, that the $RAN-
DOM shell variable only returns a value in the range of 1-32767, which is not a
very large range in computer terms, so a single instance of the variable is not suf-
ficient to overcome a determined attacker.

495

Preview from Notesale.co.uk

Page 519 of 537

36 – Exotica

A better way is to use the mktemp program (not to be confused with the mktemp
standard library function) to both name and create the temporary file. The mk-
temp program accepts a template as an argument that is used to build the file-
name. The template should include a series of “X” characters, which are replaced
by a corresponding number of random letters and numbers. The longer the series
of “X” characters, the longer the series of random characters. Here is an example:
tempfile=$(mktemp /tmp/foobar.$$.XXXXXXXXXX)

This creates a temporary file and assigns its name to the variable tempfile.
The “X” characters in the template are replaced with random letters and numbers
so that the final filename (which, in this example, also includes the expanded
value of the special parameter $$ to obtain the PID) might be something like:
/tmp/foobar.6593.UOZuvM6654

For scripts that are executed by regular users, it may be wise to avoid the use of
the /tmp directory and create a directory for temporary files within the user’s
home directory, with a line of code such as this:
[[-d $HOME/tmp]] || mkdir $HOME/tmp

Asynchronous Execution

It is sometimes desirable to perform more than one task at the same time. We have seen
how all modern operating systems are at least multitasking if not multiuser as well.
Scripts can be constructed to behave in a multitasking fashion.

Usually this involves launching a script that, in turn, launches one or more child scripts
that perform an additional task while the parent script continues to run. However, when a
series of scripts runs this way, there can be problems keeping the parent and child coordi-
nated. That is, what if the parent or child is dependent on the other, and one script must
wait for the other to finish its task before finishing its own?

bash has a builtin command to help manage asynchronous execution such as this. The
wait command causes a parent script to pause until a specified process (i.e., the child
script) finishes.

wait

We will demonstrate the wait command first. To do this, we will need two scripts, a par-
ent script:

496

Preview from Notesale.co.uk

Page 520 of 537

36 – Exotica

● The Advanced Bash-Scripting Guide also has a discussion of process substitution:
http://tldp.org/LDP/abs/html/process-sub.html

● Linux Journal has two good articles on named pipes. The first, from September
1997:
http://www.linuxjournal.com/article/2156

● and the second, from March 2009:
http://www.linuxjournal.com/content/using-named-pipes-fifos-bash

500

Preview from Notesale.co.uk

Page 524 of 537

Index

Index

A
a2ps command...333
absolute pathnames..9
alias command...50, 126
aliases...42, 50, 124
American National Standards Institute (see ANSI)
..160
American Standard Code for Information
Interchange (see ASCII).......................................17
anchors...247
anonymous FTP servers.....................................200
ANSI..160
ANSI escape codes....................................160, 164
ANSI.SYS..160
Apache web server...118
apropos command..47
apt-cache command...169
apt-get command...168p.
aptitude command..168
archiving..230
arithmetic expansion..............70, 75, 367, 456, 464
arithmetic expressions..................70, 453, 464, 467
arithmetic operators.....................................70, 465
arithmetic truth tests...................................391, 464
arrays..

append values to the end..............................483
assigning values..479
associative..485, 488
creating...478
deleting...484
determine number of elements.....................482
finding used subscripts.................................483
index...478
multidimensional..478
reading variables into...................................400
sorting...484
subscript...478
two-dimensional...478

ASCII.............................77, 81, 221, 251, 263, 333
bell character..157
carriage return..267
collation order..............................251, 253, 387
control codes..................................77, 251, 327
groff output driver..320
linefeed character...267
null character..221
printable characters......................................251
text..17

aspell command...299
assembler..341
assembly language...341
assignment operators..467
associative arrays.......................................485, 488
asynchronous execution.....................................496
audio CDs...180, 191
AWK programming language....................299, 473

B
back references..263, 294p.
backslash escape sequences.................................78
backslash-escaped special characters.................156
backups, incremental..234
basename command...440
bash..2, 124

man page..48
basic regular expressions 254, 262p., 292, 296, 306
bc command...473
Berkeley Software Distribution.........................331
bg command...116
binary...93, 97, 341, 465
bit mask..96
bit operators...469
Bourne, Steve...2, 6
brace expansion......................................71, 75, 451
branching..381

501

Preview from Notesale.co.uk

Page 525 of 537

Index

Free Software Foundation............................xix, xxi
fsck command..189
ftp command..............................199, 207, 342, 370
FTP servers...200, 370
FUNCNAME variable.......................................441
function statement..374

G
gcc..342
gedit command...114, 131
genisoimage command.......................................191
Gentoo..166
getopts command...449
Ghostscript...329
gid..89
global variables..376
globbing...26
GNOME...............................2, 27, 40, 95, 131, 208
gnome-terminal..2
GNU binutils package..452
GNU C Compiler...342
GNU coreutils package...............45, 48p., 279, 303
GNU findutils package......................................225
GNU Project..........14, xix, xxi, 225, 303, 342, 344

info command...48
GNU/Linux..xix, xxi
graphical user interfaces....................................xvii
grep command......................................62, 243, 403
groff..318
group commands..487
groups...89

effective group ID..98
gid...89
primary group ID..89
setgid..98

GUI................................3, xvii, 27, 40, 79, 95, 127
gunzip command..227
gzip command..50, 227

H
hard disks...176
hard links..24, 33, 37

creating...37
listing..38

head command...63
header files...345
hello world program...355
help command..44
here documents..369

here strings...404
hexadecimal...93, 465
hidden files...11, 69
hierarchical directory structure..............................7
high-level programming languages....................341
history..

expansion..84, 86
searching...84

history command..84
home directories...21

root account..22
/etc/passwd...90

home directory...........................8, 11, 69, 100, 126
HOME variable..126
hostname..157
HTML........................265, 299, 319, 361, 371, 373
Hypertext Markup Language.............................265

I
I/O redirection (see redirection)...........................53
id command..89
IDE...183
if compound command......................129, 418, 429
IFS variable..402
IMCP ECHO_REQUEST..................................196
incremental backups...234
info files...49
init..108
init scripts...108
inodes...37
INSTALL...344
installation wizard..167
integers...

arithmetic..70, 473
division...71, 466
expressions...388

interactivity..397
Internal Field Separator......................................402
interpreted languages...341
interpreted programs..342
interpreter...341
iso images..191p.
iso9660...180, 192

J
job control..115
job numbers..115
jobspec..116
join command...281

505

Preview from Notesale.co.uk

Page 529 of 537

Index

Joliet extensions...192
Joy, Bill..137

K
kate command..131
KDE.....................................2, 27, 40, 95, 131, 208
kedit command...131
kernel...xvi, xixp., 46, 108, 118, 174, 183, 287, 350
key fields..271
kill command..117
killall command...120
killing text..80
Knuth, Donald..318
Konqueror..27, 95, 208
konsole...2
kwrite command...114, 131

L
LANG variable...................................126, 251, 253
less command.................................17, 60, 238, 261
lftp command...202
libraries..341
LibreOffice Writer..xxi
line continuation character.................................359
line editors..137
line-continuation character.................................298
linker..341
linking..341
links..

broken...39
creating...33
hard...24, 33
symbolic...23, 34

Linux community...166
Linux distributions...166

CentOS...167, 336
Debian...166p., 340
Fedora......................................xix, 89, 167, 336
Foresight...166
Gentoo..166
Linspire...167
Mandriva..167
OpenSUSE..xix, 167
packaging systems..166
PCLinuxOS..167
Red Hat Enterprise Linux.............................167
Slackware...166
Ubuntu..xix, 166p., 336
Xandros..167

Linux Filesystem Hierarchy Standard. . .19, 24, 358
Linux kernel......xvi, xixp., 46, 108, 118, 174, 183,
287, 350

device drivers...174
literal characters...245
live CDs..xix
ln command..33, 37
local variables..376
locale..251, 253, 289, 387
locale command...253
localhost...203
locate command...209, 261
logical errors..420
logical operations...392
logical operators...214
logical relationships...................................214, 218
login prompt...5, 201
login shell...90, 99, 127
long options..14
loopback interface..199
looping...409
loops...................................420, 466, 469, 486, 492
lossless compression..227
lossy compression..227
lowercase to uppercase conversion....................463
lp command..332
lpq command..337
lpr command..331
lprm command...338
lpstat command..336
ls command..8, 13

long format...16
viewing file attributes.....................................90

Lukyanov, Alexander...202
LVM (Logical Volume Manager)...............176, 179

M
machine language...340
maintenance...............................358, 362, 364, 372
make command..347
Makefile...347
man command..45
man pages...45, 319
markup languages......................................265, 319
memory..

assigned to each process...............................109
displaying free..5
Resident Set Size..111
segmentation violation..................................119
usage...111

506

Preview from Notesale.co.uk

Page 530 of 537

Index

viewing usage...121
virtual..111

menu-driven programs.......................................406
meta key...81
meta sequences...246
metacharacters..246
metadata...167, 169
mkdir command...28, 34
mkfifo command..498
mkfs command...188, 190
mkisofs command..192
mktemp command..496
mnemonics...341
modal editor...139
monospaced fonts...329
Moolenaar, Bram..137
more command...19
mount command...178, 192
mount points...21, 178, 180
mounting..177
MP3..104
multi-user systems...88
multiple-choice decisions...................................429
multitasking..88, 108, 496
mv command..30, 35

N
named pipes...498
nano command...136
Nautilus..27, 95, 208
netstat command..198
networking...195

anonymous FTP servers...............................200
default route..199
Dynamic Host Configuration Protocol (DHCP)
..199
encrypted tunnels..206
examine network settings and statistics.......198
File Transfer Protocol (FTP)........................199
firewalls..196
FTP servers...200
Local Area Network.....................................199
loopback interface..199
man in the middle attacks.............................203
routers...198
secure communication with remote hosts... .203
testing if a host is alive.................................196
tracing the route to a host.............................197
transferring files...238
transporting files...199

Virtual Private Network................................206
newline character...157
newlines...76
NEWS..344
nl command..305
nroff command...318
null character..221
number bases..465

O
octal..93, 465, 481
Ogg Vorbis...104
OLD_PWD variable...126
OpenOffice.org Writer................................18, xxp.
OpenSSH..203
operators...

arithmetic..70, 465
assignment..467
binary..419
comparison...470
ternary...471

owning files..89

P
package files...167
package maintainers...167
package management...166

deb..166
Debian Style (.deb).......................................167
finding packages...169
high-level tools...168
installing packages.......................................169
low-level tools..168
package repositories.....................................167
Red Hat Style (.rpm)....................................167
removing packages.......................................170
RPM...166
updating packages..171

packaging systems...166
page description language..................265, 320, 328
PAGER variable...126
pagers...19
parameter expansion..............................72, 75, 456
parent directory..8
parent process...108
passwd command...106
passwords...106
paste command...280
PATA..183

507

Preview from Notesale.co.uk

Page 531 of 537

Index

lowercase to uppercase conversion..............289
numbering lines....................................267, 305
paginating...313
pasting..280
preparing for printing...................................329
removing duplicate lines................................61
rendering in PostScript.................................320
ROT13 encoded..290
searching for patterns.....................................62
sorting...61, 267
spell checking...299
substituting...294
substituting tabs for spaces...........................279
tab-delimited...278
transliterating characters..............................288
Unix format..267
viewing with less......................................17, 60

text editors..130, 264, 288
emacs..131
for writing shell scripts.................................354
gedit..131, 354
interactive...288
kate...131, 354
kedit..131
kwrite..131
line..137
nano..131, 136
pico...131
stream...290
syntax highlighting...............................354, 359
vi...131
vim..131, 354, 359
visual..137

tilde expansion...69, 75
tload command...121
top command..111
top-down design...372
Torvalds, Linus..xvi, xxi
touch command.......................222p., 239, 349, 446
tr command..288
traceroute command...197
tracing..425
transliterating characters....................................288
traps..493
troff command..318
true command...383
TTY..109
type command..43
typesetters..318, 328
TZ variable...127

U
Ubuntu..................................89, 102, 166, 250, 357
umask command..96, 105
umount command...181
unalias command...51
unary operator expected.....................................419
unary operators...465
unexpand command...279
unexpected token...418
uniq command..61, 275
Unix...xvii
Unix System V...331
unix2dos command..267
unset command..484
until compound command..................................413
until loop..413
unzip command..236
updatedb command..211
upstream providers...167
uptime..373
uptime command..379
USB flash drives..176, 190
Usenet..290
USER variable...125, 127
users...

accounts..89
changing identity..99
changing passwords......................................106
effective user ID.....................................98, 109
home directory..90
identity..89
password...90
setting default permissions.............................96
setuid..98
superuser..................................90, 92, 98p., 107
/etc/passwd...90
/etc/shadow...90

V
validating input..404
variables...72, 364, 456

assigning values....................................367, 467
constants...366
declaring...364, 367
environment..124
global..376
local..376
names..366, 459
scalar...478
shell..124

511

Preview from Notesale.co.uk

Page 535 of 537

