

Therefore, the concentration of acid phosphatase is 0.04 mg/mL.

Comment [Dk4]: Good job!! 10/ 10

Table 5. Kinetic parameters obtained from experiments 2 and 3. V_{max} and K_M values are shown for the control and inhibitor reactions. V_{max} and K_M can be calculated by using the equations of the linear trendlines on the Hanes plot in Figure 2, the slope of the trendlines correspond to $1/V_{max}$, and the x-intercepts to $-K_M$. The control tubes contained variable amounts of diluted PNPP solution in water, 50 µL of 1.0 M Na-Acetate (pH 5.7), 50 µL of 0.5mg/mL acid phosphatase and 2.0 mL of 0.5 M KOH. The inhibitor contained the same solutions as the control but it also contained 50 µL of a 6.0 mM solution of unknown inhibitor #10.

Comment [Dk15]: 3.5/ 3.5

Method	Control		Inhibitor]
	V _{max}	К _М (М)	V _{max}	К _М (М)	
	(µmol/min)		(µmol/min)		
Hanes	$8.2 \cdot 10^{-3}$	$1.9 \cdot 10^{-4}$	$8.5 \cdot 10^{-3}$	$6.6 \cdot 10^{-4}$.
The type of inhibiton that is observed in the Hank Stace Competitive in libition.					

The type of inhibiton that is observed in the Hant set c_1 competitive inhibition. Competitive inhibition is when the V_{13} is unalfected but the abount of substrate needed to achieve it increases; which is graphically vilue it Eggare 2 by an increase in K_m by factor one As can be seen from Table 3 the v_{max} was calculated to be 8.2 \cdot 10 s µmol/min for the control and $c_1 = 10^{-3}$ µmol/min for the inhibitor. This is a 1% difference in V_{max} which is within the allowed 25% cutoff range. The K_M was calculated to be $1.9 \cdot 10^{-4}$ M for the control and $6.6 \cdot 10^{-4}$ M for the inhibitor. The difference in K_M is 29%, which is outside the 25% cutoff range. Since the V_{max} was unaffected and the K_M increased the 6.0 mM solution of unknown inhibitor #10 is a competitive inhibitor as it shares the characteristics of completive inhibition.

R6