(c) Given an angle 6, show that €? = cos@ +isinf € C and conversely,
every element of z € C' is of this form for a unique 6 € [0, 27). This is
another way to turn C' into a group which is the same as the previous
group in an appropriate sense.
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We need to come back and check that Z, is actually a group. We make
use of a result usually called the “division algorithm”. Although it’s not an
algorithm in the technical sense, it is the basis of the algorithm for long division
that one learns in school.

Theorem 4.5. Let x be an integer and n positive integer, then there exists a
unique pair of integers q,r satisfying

r=qgn+r, 0<r<n

Proof. Let
R={zx—q¢n|,d €Zand ¢'n <z}

Observe that R C N, so we can choose a smallest element r = x — gn € R.
Suppose r > n. Then z = gn +7r = (¢ + 1)n + (r — n) means that r — n lies in
R. This is a contradiction, therefore r < n.

Suppose that x = ¢'n + 1’ with v' < n. Then ' € R so v’ > r. Then
gn=q¢n+ (" —r) implies that n(¢—¢q') = v’ —r. So ' —r is divisible by n. O
the other hand 0 < 7' —r < n. But 0 is the only integer in thls range vi b
by n is 0. Therefore r = r’ and gn = ¢’n which implies ¢ & 6

simply “mod”. When z > 0

97 long divison by n.
Lemma 4. G\KIH'QXTQ(E intege -ilen

\, \e Zmod n) @ (xo mod n)

Proof. Set r; = u? aa' Qen x; = qn + r; for appropriate ¢;. We have

1+ x2 = (1 + g2)n + (r1 + r2). We see that

We denote the number r glven aﬂ@ ﬁmod is read “modulo” or
rem

L +Tre =171 D1y ifri+ra<n
(x1 + x2) modn = )
r1+7ro—n=1r ®ry otherwise

O

This would imply that f(z) = x mod n gives a homomorphism from Z — Z,
if we already knew that Z, were a group. Fortunately, this can be converted
into a proof that it is one.

Lemma 4.7. Suppose that (G, *,¢e) is a group and f : G — H is an onto map
to another set H with an operation * such that f(z*xy) = f(z) * f(y). Then H
is a group with identity f(e).

In the future, we usually just write + for modular addition.

The dihedral group D,, is the full symmetry group of regular n-gon which
includes both rotations and flips. There are 2n elements in total consisting
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Chapter 5

Finite sets, counting and
group theory

Let N ={0,1,2...} be the set of natural numbers. Given n, let E@ EQK
x < n}. So that [0] = 0 is the empty set, and[] { In>0.

A set X is called finite if there is a one to o also called a one
to one correspondence) f oice of n is unique

(which we will accept as a fW‘\an d th ﬁ‘ty of X, which we

denote by | X]. .‘ ‘i

? X is finite 7@ 2 Y 18 a one to one correspondence,
nite an? @

Proof. By definitior?, we have a one to one correspondence f : [n] — X, where
n = |X|. Therefore go f: [n] — Y is a one to one correspondence. O

Proposition 5.2. If a finite set X can be written as a union of two disjoint
subsets YUZ, then | X| = |Y|+|Z|. (Recall thatYUZ ={z |z €Y orxze Z},
and disjoint means their intersection is empty.)

Proof. Let f:[n] =Y and g : [m] = Z be one to one correspondences. Define
h:[n+m] — X by
N B () ifi<n
h(l)_{g(in) ifi>n
This is a one to one correspondence. O

A partition of X is a decomposition of X as a union of subsets X = Y; U
Y5 U...Y, such that Y; and Y; are disjoint whenever i # j.

Corollary 5.3. If X =Y, UY,U...Y, is a partition, then |X| = |Y1| + |Ya| +
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Next, we want to develop a method for computing the order of a subgroup
of S,.

Definition 5.13. Given i € {1,...,n}, the orbit Orb(i) = {g(i) | g € G}. A
subgroup G C Sy, is called transitive if for some i, Orb(i) = {1,...,n

Definition 5.14. Given subgroup G C S, and i € {1,...n}, the stabilizer of i,
is Stab(i) = {f € G| f(i) =i}
Theorem 5.15 (Orbit-Stabilizer theorem). Given a subgroup G C S, and
i€{l,...,n} then

|G| = | Orb(7)] - [ Stab(i)|

In particular,
|G| = n| Stab(i)|

if G is transitive.
Proof. We define a function f : G — Orb(i) by f(g) = g(i). The prei M
)‘S%

= 1) = {9 € G| g(i) = j} By deﬁmtlon if j € Orb

go € T. We want to show that T' = go Stab(i). In one d1
then goh( ) = j. Therefore goh € T Suppose g = ggh where
h

h =gy lg. We see that h(i g Lo(i) erefore we have
established that T' = gg Stab
|G\ "Y@ ta -‘ |011 | Stab(4)
\, \ eEOrb
P { e 0
_ n[

Corollary 5.16.

Proof. We prove this by mathematical induction starting from n = 1. When
n =1, S, consists of the identity so |S1| = 1 = 1l. In general, assuming that the
corollary holds for n, we have prove it for n+1. The group S, 1 acts transitively
on {1,...,n+ 1}. We want to show that there is a one to one correspondence
between Stab(n + 1) and S,,. An element of f € Stab(n + 1) looks like

( 1 2 ...n n+ 1)

FO) F2) ) n+1

Dropping the last column yields a permutation in S,,, and any permutation in S,
extends uniquely to an element of Stab(n+1) by adding that column. Therefore

we have established the correspondence. It follows that | Stab(n + 1)| = |S,| =
n!. Therefore

|Spt1| = (n+1)|Stab(n + 1)| = (n+ 1)(n!) = (n+ 1)!
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Proposition 7.10. SO(2) is a normal subgroup of O(2).

We give two proofs. The first, which uses determinants, gets to the point

quickly. However, the second proof is also useful since it leads to the formula
(7.1).

First Proof. We start with a standard result.
Theorem 7.11. For any pair of 2 x 2 matrices A and B, det AB = det Adet B.

Proof. A brute force calculation shows that
(a11a22 — a12a21)(b11baz — bi2bar)
and
(a11b11 + a12bar)(ag1b12 + azabaz) — (a11b12 + a12b22)(a21b11 + az2b22)
both can be expanded to K

a11a22b11b22 — ar1a22b12b21 — a12a21011b22 + a]\aélzleo u

O
Therefore det : O(2 wQD 1sm, * denote the group
of nonzero real nu\%lﬁ(@ llphcatlon fol that SO(2) is the

kernel. So 1tw ? O
a a& (0 )A*1 € SO(2) for any A € O(2).
P ( s 1s true when ? ecause SO(2) is a subgroup.

It remains to shdw that conjugating a rotation by a reflection is a rotation.
In fact we will show that for any reflection A

AR(0)A™! = R(—0) (7.1)
First let A be the reflection F' = (1) _01 about the z-axis. Then an easy

calculation shows that FR(9)F~! = FR(0)F = R(—0). Now assume that A is
a general reflection. Then

__|cos¢  sing |
o [sin ¢ —cos (b} = FR(-¢)
So
AR(0)A™ = FR(—¢)R(O)R($)F = R(—0)
as claimed. O

So now we have a normal subgroup SO(2) C O(2) which we understand
pretty well. What about the quotient O(2)/SO(2). This can identified with the
cyclic group {£1} C R* using the determinant.
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Chapter 9
Z,, is cyclic

Given a field K, a polynomial in z is a symbolic expression K

where n € N is arbitrary and the coefficients a,,, gat polyno-
mials are often viewed as functions but it 1sm§ eally treat these as
expressions. First of all the algebr ecome_glearer, and secondly

when K is finte, there o m ctlo \'T - K but infinitely
many polynomi:ls g‘x he set o he ials by Kz]. We omit

1y
anx"™ + ap, " .+ ag

terms gv are zero so out a polynomlal w1th extra
a €r convenient e ¥ + O:c + 1. The highest power of x oc-
nt 1

P ( ing with a non s called the degree. We can add polynomials
by adding the coeffi%ients

f=anz" —|—amx”_1 +...+ag
g =bpa" —l—bnlx"_l + ...+ by
f+g=(an+by)z" +...(ap+ bo)
Multiplication is defined using the rules one learns in school
fg = (aobo) + (arby + agh1)x + (asby + a1by + agba)z? +
:( Z (libj)l'k
itj=k

Theorem 9.1. K|[x] is a commutative ring with the operations described above.

Proof. This is fairly routine, so we just list a few steps. Let f and g be as above
and
h=cnaz™ +cn1z2" P+ ... ¢

Then
flgh)=( Y abjer)a’ = (fg)h

itj+k=0
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We now apply these results to the field K = Z,, where p is a prime. Some-
times this is denoted by I, to emphasize that its a field. When the need arises,
let us write @ to indicate we are working Z,, but we won’t bother when the
context is clear.

Proposition 9.5. We can factor 2P —z =x(z — 1)(z —2)...(x — (p— 1)) in

Zp|]
Proof. By Fermat’s little theorem, 1...,p — 1 are roots. Therefore 2?7 — z =
zlx—1)(z—2)...(x —p—1) in Zp[z]. O

Corollary 9.6 (Wilson’s theorem). (p —1)! = —1

Proof. We have 2?~1 —1 = (z —1)(z —2)...(z — (p — 1)). Now evaluate both
sides at 0. O

Corollary 9.7. The binomial coefficients (5) = #ﬁn)! are divisible by n when

l<n<p K
Proof. Substitue 1 4 z into the above identity to obtain (1 + x g@ u
d

in Z,. Now expand using the binomial theorem, Wthh is V@m (see

exermses) to obtain “
ﬂ \a@few re?& @ ez% the next result is not.
1

Theorem 9.8. If prime, then Z,, is cyclic.

Proof in a special case. We won’t prove this in general, but to get some sense
of why this is true, let’s prove it when p = 2¢ + 1, where ¢ is another prime.
This is not typical, but it can certainly happen (e.g. p = 7,11,23,...). Then
Z, has order 2q. The possible orders of its elements are 1,2, g, or 2q. There is
only element of order 1, namely 1. An element of order 2 is a root of z2 — 1,
so it must be —1. An element of order ¢ satisfies 9 — 1 = 0, and be d1ﬁ"erent
from 1. Thus there are at most ¢ — 1 possibilities. So to summarize there are no
more g + 1 elements of orders 1,2, q. Therefore there are at least ¢ — 1 elements
of order 2¢, and these are necessarily generators. O

9.9 Exercises

1. Given a field K and a positive integer n, let m = 14...+1 (n times). K is
said to have positive characteristic if m = 0 for some positive n, otherwise
K is said to have characteristic 0. In the positive characteristic case, the
smallest n > 0 with @ = 0 is called the characteristic. Prove that the
characteristic is a prime number.
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2. For any field, prove the binomial theorem

(z+1)" = En: (Z)xm

m=0

(Recall (1) = () + ("))

m

3. Let K be a field and s € K. Let K[y/s] be the set of expressions a + by/s,
with a,b € K. Show that this becomes a commutative ring if we define
addition and multiplication as the notation suggests:

(a+bivs)+ (c+dys)=(a+c)+ (b+d)Vs
(a+by/s)(c+dys) = (ac+bds) + (ad + be)y/s

4. Show K[\/s] has zero divisors if 2 — s = 0 has a root. If this equation
does not have a root, then prove that K[y/s] is a field (Hint: (a+by/s)(a
by/s) =7 and when is it zero?). V

5. When p is an odd prime, show that the map = — gZ lS not
onto. Use this fact to construct a field Wlt % d Characterlstlc
’ N

e\N
\© page

prev
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Chapter 12

Determinants

The ideas of the previous chapter can be applied to linear algebra. Given an

n x n matrix A = [a;;] over a field K, the determinant K
oM

This is bit like the antlsymmetrlzatlﬁ Xﬁa:a?ler j‘?ere is also symmet-
e evi

oeS,

det A= sign(0)aio) .- no n>\e G

ric version, without sign(g ermane r, as far as I know,
it is much less usefde 1t10n W minant, is not very
practicel. T, theoreticall

@MA’H 12.1. @Ta@anatm’x A, the following properties hold.

(a) det I =1
(b) If B is obtained by multiplying the ith row of A by b then det B =bdet A

(¢) Suppose that the ith row of C is the sum of the ith rows of A an B, and
all other rows of A, B and C are identical. Then det C' = det A + det B.

(d) det A = det AT

(e) Let us write A = [vy,...,v,], where vy,vy,... are the columns. Then
det(vr(1y, - - - Vr(n)) = sign(7) det(vy, ... v,)

Proof. Ttem (a) is clear because all the terms 014(1) - - - Opg(n) = 0 unless o = I.
(b)
det B = Z sign(a)alg(l) e (baw(i)) -+ Opo(n)
oc€ESy

=b Z Slgn ala(l < Qig(i) - - - Ono(n)
oesS,

=bdet A
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Proof. The characteristic polynomial p(\) = A®+azA?+. .. has real coefficients.
Since A\? grows faster than the other terms, p(\) > 0 when A > 0, and p(\) < 0
when A\ < 0. Therefore the graph of y = p(x) must cross the z-axis somewhere,
and this would give a real root of p. (This intuitive argument is justified by the

intermediate value theorem from analysis.)
O

Lemma 13.5. If A€ O(3), 1 or —1 is an eigenvalue.

Proof. By the previous lemma, there exists a nonzero vector v = [z,vy, 2]7 € R?
and real number A such that Av = Av. Since a multiple of v will satisfy the same
conditions, we can assume that the square of the length v7v = 22 + % + 2% = 1.
It follows that

M= ()T () = (Av)T (Av) = vT AT Av = vTv =1
O

Theorem 13.6. A matriz in SO(3) is a rotation. K

Proof. Let R € SO(3). By the previous lemma, £1 is an § VaI@O .
We divide the proof into two cases. First su Q‘E 1 tgenvalue. Let
vs be an eigenvector with elgenvalu % at v3 is a unit vector.

We can complete thls to an or 1, 1}2, vectors v1 and vy
form a basis for th 1cular to v I‘lX A = [v1,v2,v3]
is orthogonal, h r@ b sw1tch1ng v1 and wg if
-
neCﬁave hat
P ( e %@ V2, RU3 th RUQ, 1)3]

remains orthogonal Therefore Rvq, Rvs lie in v3 Thus we can write

R(v1) = avy + buo
R(vq) = cvy + dug

R(’Ug):’l)g
The matrix
a b 0
A'RA=|c d 0
0 0 1

lies in SO(3). It follows that the block

it is a plane rotation matrix R(6). It follows that R = R(6,v3).
Now suppose that —1 is an eigenvalue and let v3 be an eigenvector. Defining
A as above, we can see that

Qo
—_

lies in SO(2), which means that

a b 0
AT'RA=1|¢c d 0
0 0 -1



This time the upper 2 x 2 is block lies O(2) with determinant —1. This implies
that it is a reflection. This means that there is a nonzero vector v in the plane
vi such Rv = v. Therefore R also +1 as an eigenvalue, and we have already
shown that R is a rotation. O

From the proof, we extract the following useful fact.

Corollary 13.7. Every matriz in SO(3) has +1 as an eigenvalue. If the matriz
is not the identity then the corresponding eigenvector is the axis of rotation.

We excluded the identity above, because everything would be an axis of
rotation for it. Let us summarize everything we’ve proved in one statement.

Theorem 13.8. The set of rotations in R can be identified with SO(3), and
this forms a group.

13.9 Exercises

1. Check that unlike SO(2), SO(3) is not abelian. (ThlS could get@ssﬁ“

choose the matrices with care.)

2. Given two rotations R; = Ql,vz le of R2R1R2

Rovy. Conclude that a norm d erent from {I } is
infinite.

. Check ¢ (O
P(e\, N -‘ %@@ s 0

has 1, et as complex eigenvalues. With the help of the previous exercise
show that this holds for any rotation R(6,v).

4. Show the map f: O(2) — SO(3) defined by
A 0
J(A4) = {0 det(A)]
is a one to one homomorphism. Therefore we can view O(2) as a subgroup

of SO(3). Show that this subgroup is the subgroup {g € SO(3) | gr =
47}, where r = [0,0,1]%.

5. Two subgroups H; C G of a group are conjugate if for some g € G,
Hy = gH197 ' := {ghg™* | h € Hi}. Prove that H; = H, if they are
conjugate. Is the converse true?

6. Prove that for any nonzero vector v € R3, the subgroup {g € SO(3) |
gv = v} (respectively {g € SO(3) | gv = v}) is conjugate, and there-
fore isomorphic, to O(2) (respectively SO(2)). (Hint: use the previous
exercises.)
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Lemma 14.5. Ifn =2, G is cyclic.
Proof. Since Stab(p;) C G, we have

) Ol) o
But (14.1) implies

(1) = (-~ rsmn) (4~ o)

and this forces equality in (14.2) for both ¢ = 1,2. This implies that G =
Stab(p1) = Stab(ps2). This means that g € G is a rotation with axis the line L
connecting p; to 0 (or ps to 0, which would have to be the same). It follows
that g would have to be a rotation in the plane perpendicular to L. So that G
can be viewed as subgroup of SO(2). Therefore it is cyclic by theorem 14.1. O

We now turn to the case n = 3. Let us set n; = | Stab( pl | )| and arrapge t
in order 2 < ny < ng < ng. (14.1) becomes 36

4@)4;@ Qg-:;%
! Q
P ( @e\lft Sldels\l\glr @é i}@h?ave a natural constraint.

Lemma 14.6. The only integer solutions to the inequalities

2<n; <nz<n3

1 1 1
—+ —+—>1
ni1 no ns
are as listed together with the corresponding orders of G.
(a) (2,2,n3) and |G| = 2ns3.
(b) (2,3,3) and |G| = 12.
(c) (2,3,4) and |G| = 24.
(d) (2,3,5) and |G| = 60.

To complete the proof of theorem 14.2, we need the following

Lemma 14.7. A subgroup G C SO(3) corresponding to the triple (2,2,n) is
isomorphic to D,,.
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