
(c) Given an angle θ, show that eiθ = cos θ + i sin θ ∈ C and conversely,
every element of z ∈ C is of this form for a unique θ ∈ [0, 2π). This is
another way to turn C into a group which is the same as the previous
group in an appropriate sense.
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We need to come back and check that Zn is actually a group. We make
use of a result usually called the “division algorithm”. Although it’s not an
algorithm in the technical sense, it is the basis of the algorithm for long division
that one learns in school.

Theorem 4.5. Let x be an integer and n positive integer, then there exists a
unique pair of integers q, r satisfying

x = qn+ r, 0 ≤ r < n

Proof. Let
R = {x− q′n |, q′ ∈ Z and q′n ≤ x}

Observe that R ⊆ N, so we can choose a smallest element r = x − qn ∈ R.
Suppose r ≥ n. Then x = qn+ r = (q + 1)n+ (r − n) means that r − n lies in
R. This is a contradiction, therefore r < n.

Suppose that x = q′n + r′ with r′ < n. Then r′ ∈ R so r′ ≥ r. Then
qn = q′n+ (r′− r) implies that n(q− q′) = r′− r. So r′− r is divisible by n. On
the other hand 0 ≤ r′ − r < n. But 0 is the only integer in this range divisible
by n is 0. Therefore r = r′ and qn = q′n which implies q = q′.

We denote the number r given above by x mod n; mod is read “modulo” or
simply “mod”. When x ≥ 0, this is just the remainder after long divison by n.

Lemma 4.6. If x1, x2, n are integers with n > 0, then

(x1 + x2)mod n = (x1 mod n)⊕ (x2 mod n)

Proof. Set ri = xi mod n. Then xi = qin + ri for appropriate qi. We have
x1 + x2 = (q1 + q2)n+ (r1 + r2). We see that

(x1 + x2)mod n =

{
r1 + r2 = r1 ⊕ r2 if r1 + r2 < n

r1 + r2 − n = r1 ⊕ r2 otherwise

This would imply that f(x) = x mod n gives a homomorphism from Z→ Zn
if we already knew that Zn were a group. Fortunately, this can be converted
into a proof that it is one.

Lemma 4.7. Suppose that (G, ∗, e) is a group and f : G→ H is an onto map
to another set H with an operation ∗ such that f(x ∗ y) = f(x) ∗ f(y). Then H
is a group with identity f(e).

In the future, we usually just write + for modular addition.

The dihedral group Dn is the full symmetry group of regular n-gon which
includes both rotations and flips. There are 2n elements in total consisting
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Chapter 5

Finite sets, counting and
group theory

Let N = {0, 1, 2 . . .} be the set of natural numbers. Given n, let [n] = {x ∈ N |
x < n}. So that [0] = ∅ is the empty set, and [n] = {0, 1, . . . , n − 1} if n > 0.
A set X is called finite if there is a one to one onto function (also called a one
to one correspondence) f : [n] → X for some n ∈ N. The choice of n is unique
(which we will accept as a fact), and is called the cardinality of X, which we
denote by |X|.

Lemma 5.1. If X is finite and g : X → Y is a one to one correspondence,
then Y is finite and |Y | = |X|.

Proof. By definition, we have a one to one correspondence f : [n] → X, where
n = |X|. Therefore g ◦ f : [n]→ Y is a one to one correspondence.

Proposition 5.2. If a finite set X can be written as a union of two disjoint
subsets Y ∪Z, then |X| = |Y |+ |Z|. (Recall that Y ∪Z = {x | x ∈ Y or x ∈ Z},
and disjoint means their intersection is empty.)

Proof. Let f : [n]→ Y and g : [m]→ Z be one to one correspondences. Define
h : [n+m]→ X by

h(i) =

{
f(i) if i < n
g(i− n) if i ≥ n

This is a one to one correspondence.

A partition of X is a decomposition of X as a union of subsets X = Y1 ∪
Y2 ∪ . . . Yn such that Yi and Yj are disjoint whenever i 6= j.

Corollary 5.3. If X = Y1 ∪ Y2 ∪ . . . Yn is a partition, then |X| = |Y1|+ |Y2|+
. . . |Yn|.
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Next, we want to develop a method for computing the order of a subgroup
of Sn.

Definition 5.13. Given i ∈ {1, . . . , n}, the orbit Orb(i) = {g(i) | g ∈ G}. A
subgroup G ⊆ Sn is called transitive if for some i, Orb(i) = {1, . . . , n}.

Definition 5.14. Given subgroup G ⊆ Sn and i ∈ {1, . . . n}, the stabilizer of i,
is Stab(i) = {f ∈ G | f(i) = i}

Theorem 5.15 (Orbit-Stabilizer theorem). Given a subgroup G ⊆ Sn, and
i ∈ {1, . . . , n} then

|G| = |Orb(i)| · | Stab(i)|

In particular,
|G| = n|Stab(i)|

if G is transitive.

Proof. We define a function f : G → Orb(i) by f(g) = g(i). The preimage
T = f−1(j) = {g ∈ G | g(i) = j}. By definition if j ∈ Orb(i), there exists
g0 ∈ T . We want to show that T = g0 Stab(i). In one direction, if h ∈ Stab(i)
then g0h(i) = j. Therefore g0h ∈ T . Suppose g ∈ T . Then g = g0h where
h = g−10 g. We see that h(i) = g−10 g(i) = g−10 (j) = i. Therefore, we have
established that T = g0 Stab(i). This shows that

|G| =
∑

j∈Orb(i)

|f−1(j)| =
∑

j∈Orb(i)

|Stab(i)| = |Orb(i)| · | Stab(i)|

Corollary 5.16. |Sn| = n!

Proof. We prove this by mathematical induction starting from n = 1. When
n = 1, Sn consists of the identity so |S1| = 1 = 1!. In general, assuming that the
corollary holds for n, we have prove it for n+1. The group Sn+1 acts transitively
on {1, . . . , n + 1}. We want to show that there is a one to one correspondence
between Stab(n+ 1) and Sn. An element of f ∈ Stab(n+ 1) looks like(

1 2 . . . n n+ 1
f(1) f(2) . . . f(n) n+ 1

)
Dropping the last column yields a permutation in Sn, and any permutation in Sn
extends uniquely to an element of Stab(n+1) by adding that column. Therefore
we have established the correspondence. It follows that |Stab(n+ 1)| = |Sn| =
n!. Therefore

|Sn+1| = (n+ 1)|Stab(n+ 1)| = (n+ 1)(n!) = (n+ 1)!
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Proposition 7.10. SO(2) is a normal subgroup of O(2).

We give two proofs. The first, which uses determinants, gets to the point
quickly. However, the second proof is also useful since it leads to the formula
(7.1).

First Proof. We start with a standard result.

Theorem 7.11. For any pair of 2×2 matrices A and B, detAB = detAdetB.

Proof. A brute force calculation shows that

(a11a22 − a12a21)(b11b22 − b12b21)

and

(a11b11 + a12b21)(a21b12 + a22b22)− (a11b12 + a12b22)(a21b11 + a22b22)

both can be expanded to

a11a22b11b22 − a11a22b12b21 − a12a21b11b22 + a12a21b12b21

Therefore det : O(2)→ R∗ is a homomorphism, where R∗ denote the group
of nonzero real numbers under multiplication. It follows that SO(2) is the
kernel. So it is normal.

Second Proof. We have to show that AR(θ)A−1 ∈ SO(2) for any A ∈ O(2).
This is true when A ∈ SO(2) because SO(2) is a subgroup.

It remains to show that conjugating a rotation by a reflection is a rotation.
In fact we will show that for any reflection A

AR(θ)A−1 = R(−θ) (7.1)

First let A be the reflection F =

[
1 0
0 −1

]
about the x-axis. Then an easy

calculation shows that FR(θ)F−1 = FR(θ)F = R(−θ). Now assume that A is
a general reflection. Then

A =

[
cosφ sinφ
sinφ − cosφ

]
= FR(−φ)

So
AR(θ)A−1 = FR(−φ)R(θ)R(φ)F = R(−θ)

as claimed.

So now we have a normal subgroup SO(2) ⊂ O(2) which we understand
pretty well. What about the quotient O(2)/SO(2). This can identified with the
cyclic group {±1} ⊂ R∗ using the determinant.
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Chapter 9

Z∗p is cyclic

Given a field K, a polynomial in x is a symbolic expression

anx
n + an1x

n−1 + . . .+ a0

where n ∈ N is arbitrary and the coefficients an, . . . , a0 ∈ K. Note that polyno-
mials are often viewed as functions but it is important to really treat these as
expressions. First of all the algebraic properties become clearer, and secondly
when K is finte, there only finitely many functions from K → K but infinitely
many polynomials. We denote the set of these polynomials by K[x]. We omit
terms if the coefficients are zero, so we can pad out a polynomial with extra
zeros whenever convenient e.g. 1 = 0x2 + 0x + 1. The highest power of x oc-
curring with a nonzero coefficient is called the degree. We can add polynomials
by adding the coefficients

f = anx
n + an1x

n−1 + . . .+ a0

g = bnx
n + bn1

xn−1 + . . .+ b0

f + g = (an + bn)xn + . . . (a0 + b0)

Multiplication is defined using the rules one learns in school

fg = (a0b0) + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x2 + . . .

= (
∑
i+j=k

aibj)x
k

Theorem 9.1. K[x] is a commutative ring with the operations described above.

Proof. This is fairly routine, so we just list a few steps. Let f and g be as above
and

h = cnx
n + cn−1x

n−1 + . . . c0

Then
f(gh) = (

∑
i+j+k=`

aibjck)x` = (fg)h
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We now apply these results to the field K = Zp, where p is a prime. Some-
times this is denoted by Fp to emphasize that its a field. When the need arises,
let us write a to indicate we are working Zp, but we won’t bother when the
context is clear.

Proposition 9.5. We can factor xp − x = x(x − 1)(x − 2) . . . (x − (p − 1)) in
Zp[x]

Proof. By Fermat’s little theorem, 1 . . . , p − 1 are roots. Therefore xp − x =
x(x− 1)(x− 2) . . . (x− p− 1) in Zp[x].

Corollary 9.6 (Wilson’s theorem). (p− 1)! = −1

Proof. We have xp−1 − 1 = (x− 1)(x− 2) . . . (x− (p− 1)). Now evaluate both
sides at 0.

Corollary 9.7. The binomial coefficients
(
p
n

)
= p!

n!(p−n)! are divisible by n when
1 < n < p.

Proof. Substitue 1 + x into the above identity to obtain (1 + x)p − (1 + x) = 0
in Zp. Now expand using the binomial theorem, which is valid in any field (see
exercises), to obtain

p−1∑
n=1

(
p

n

)
xn = 0

The last few results were fairly easy, the next result is not.

Theorem 9.8. If p is prime, then Z∗p is cyclic.

Proof in a special case. We won’t prove this in general, but to get some sense
of why this is true, let’s prove it when p = 2q + 1, where q is another prime.
This is not typical, but it can certainly happen (e.g. p = 7, 11, 23, . . .). Then
Z∗p has order 2q. The possible orders of its elements are 1, 2, q, or 2q. There is
only element of order 1, namely 1. An element of order 2 is a root of x2 − 1,
so it must be −1. An element of order q satisfies xq − 1 = 0, and be different
from 1. Thus there are at most q−1 possibilities. So to summarize there are no
more q+ 1 elements of orders 1, 2, q. Therefore there are at least q− 1 elements
of order 2q, and these are necessarily generators.

9.9 Exercises

1. Given a field K and a positive integer n, let n = 1+ . . .+1 (n times). K is
said to have positive characteristic if n = 0 for some positive n, otherwise
K is said to have characteristic 0. In the positive characteristic case, the
smallest n > 0 with n = 0 is called the characteristic. Prove that the
characteristic is a prime number.
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2. For any field, prove the binomial theorem

(x+ 1)n =

n∑
m=0

(
n

m

)
xm

(Recall
(
n+1
m

)
=
(
n
m

)
+
(
n+1
m

)
.)

3. Let K be a field and s ∈ K. Let K[
√
s] be the set of expressions a+ b

√
s,

with a, b ∈ K. Show that this becomes a commutative ring if we define
addition and multiplication as the notation suggests:

(a+ bi
√
s) + (c+ d

√
s) = (a+ c) + (b+ d)

√
s

(a+ b
√
s)(c+ d

√
s) = (ac+ bds) + (ad+ bc)

√
s

4. Show K[
√
s] has zero divisors if x2 − s = 0 has a root. If this equation

does not have a root, then prove that K[
√
s] is a field (Hint: (a+b

√
s)(a−

b
√
s) =? and when is it zero?).

5. When p is an odd prime, show that the map x 7→ x2 from Z∗p → Z∗p is not
onto. Use this fact to construct a field with p2 elements and characteristic
p.
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Chapter 12

Determinants

The ideas of the previous chapter can be applied to linear algebra. Given an
n× n matrix A = [aij ] over a field K, the determinant

detA =
∑
σ∈Sn

sign(σ)a1σ(1) . . . anσ(n)

This is bit like the antisymmetrization considered earlier. There is also symmet-
ric version, without sign(σ), called the permanent. However, as far as I know,
it is much less useful. The definition, we gave for the determinant, is not very
practical. However, it is theoretically quite useful.

Theorem 12.1. Given an n× n matrix A, the following properties hold.

(a) det I = 1

(b) If B is obtained by multiplying the ith row of A by b then detB = bdetA

(c) Suppose that the ith row of C is the sum of the ith rows of A an B, and
all other rows of A,B and C are identical. Then detC = detA+ detB.

(d) detA = detAT .

(e) Let us write A = [v1, . . . , vn], where v1, v2, . . . are the columns. Then
det(vτ(1), . . . vτ(n)) = sign(τ) det(v1, . . . vn)

Proof. Item (a) is clear because all the terms δ1σ(1) . . . δnσ(n) = 0 unless σ = I.
(b)

detB =
∑
σ∈Sn

sign(σ)a1σ(1) . . . (baiσ(i)) . . . anσ(n)

= b
∑
σ∈Sn

sign(σ)a1σ(1) . . . aiσ(i) . . . anσ(n)

= bdetA
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Proof. The characteristic polynomial p(λ) = λ3+a2λ
2+ . . . has real coefficients.

Since λ3 grows faster than the other terms, p(λ) > 0 when λ� 0, and p(λ) < 0
when λ� 0. Therefore the graph of y = p(x) must cross the x-axis somewhere,
and this would give a real root of p. (This intuitive argument is justified by the
intermediate value theorem from analysis.)

Lemma 13.5. If A ∈ O(3), 1 or −1 is an eigenvalue.

Proof. By the previous lemma, there exists a nonzero vector v = [x, y, z]T ∈ R3

and real number λ such that Av = λv. Since a multiple of v will satisfy the same
conditions, we can assume that the square of the length vT v = x2 +y2 +z2 = 1.
It follows that

λ2 = (λv)T (λv) = (Av)T (Av) = vTATAv = vT v = 1

Theorem 13.6. A matrix in SO(3) is a rotation.

Proof. Let R ∈ SO(3). By the previous lemma, ±1 is an eigenvalue.
We divide the proof into two cases. First suppose that 1 is eigenvalue. Let

v3 be an eigenvector with eigenvalue 1. We can assume that v3 is a unit vector.
We can complete this to an orthonormal set v1, v2, v3. The vectors v1 and v2
form a basis for the plane v⊥3 perpendicular to v3. The matrix A = [v1, v2, v3]
is orthogonal, and we can assume that it is in SO(3) by switching v1 and v2 if
necessary. It follows that

RA = [Rv1, Rv2, Rv3] = [Rv1, Rv2, v3]

remains orthogonal. Therefore Rv1, Rv2 lie in v⊥3 . Thus we can write

R(v1) = av1 + bv2

R(v2) = cv1 + dv2

R(v3) = v3

The matrix

A−1RA =

a b 0
c d 0
0 0 1


lies in SO(3). It follows that the block

[
a b
c d

]
lies in SO(2), which means that

it is a plane rotation matrix R(θ). It follows that R = R(θ, v3).
Now suppose that −1 is an eigenvalue and let v3 be an eigenvector. Defining

A as above, we can see that

A−1RA =

a b 0
c d 0
0 0 −1


62

Preview from Notesale.co.uk

Page 63 of 77



This time the upper 2× 2 is block lies O(2) with determinant −1. This implies
that it is a reflection. This means that there is a nonzero vector v in the plane
v⊥3 such Rv = v. Therefore R also +1 as an eigenvalue, and we have already
shown that R is a rotation.

From the proof, we extract the following useful fact.

Corollary 13.7. Every matrix in SO(3) has +1 as an eigenvalue. If the matrix
is not the identity then the corresponding eigenvector is the axis of rotation.

We excluded the identity above, because everything would be an axis of
rotation for it. Let us summarize everything we’ve proved in one statement.

Theorem 13.8. The set of rotations in R3 can be identified with SO(3), and
this forms a group.

13.9 Exercises

1. Check that unlike SO(2), SO(3) is not abelian. (This could get messy, so
choose the matrices with care.)

2. Given two rotations Ri = R(θi, vi), show that the axis of R2R1R
−1
2 is

R2v1. Conclude that a normal subgroup of SO(3), different from {I}, is
infinite.

3. Check that cos θ − sin θ 0
sin θ cos θ 0

0 0 1


has 1, e±iθ as complex eigenvalues. With the help of the previous exercise
show that this holds for any rotation R(θ, v).

4. Show the map f : O(2)→ SO(3) defined by

f(A) =

[
A 0
0 det(A)

]
is a one to one homomorphism. Therefore we can view O(2) as a subgroup
of SO(3). Show that this subgroup is the subgroup {g ∈ SO(3) | gr =
±r}, where r = [0, 0, 1]T .

5. Two subgroups Hi ⊆ G of a group are conjugate if for some g ∈ G,
H2 = gH1g

−1 := {ghg−1 | h ∈ H1}. Prove that H1
∼= H2 if they are

conjugate. Is the converse true?

6. Prove that for any nonzero vector v ∈ R3, the subgroup {g ∈ SO(3) |
gv = ±v} (respectively {g ∈ SO(3) | gv = v}) is conjugate, and there-
fore isomorphic, to O(2) (respectively SO(2)). (Hint: use the previous
exercises.)

63

Preview from Notesale.co.uk

Page 64 of 77



Lemma 14.5. If n = 2, G is cyclic.

Proof. Since Stab(pi) ⊆ G, we have(
1− 1

|Stab(pi)|

)
≤
(

1− 1

|G|

)
(14.2)

But (14.1) implies

2

(
1− 1

|G|

)
=

(
1− 1

|Stab(p1)|

)
+

(
1− 1

|Stab(p2|

)
and this forces equality in (14.2) for both i = 1, 2. This implies that G =
Stab(p1) = Stab(p2). This means that g ∈ G is a rotation with axis the line L
connecting p1 to 0 (or p2 to 0, which would have to be the same). It follows
that g would have to be a rotation in the plane perpendicular to L. So that G
can be viewed as subgroup of SO(2). Therefore it is cyclic by theorem 14.1.

We now turn to the case n = 3. Let us set ni = |Stab(pi)| and arrange them
in order 2 ≤ n1 ≤ n2 ≤ n3. (14.1) becomes

2

(
1− 1

|G|

)
=

(
1− 1

n1

)
+

(
1− 1

n2

)
+

(
1− 1

n3

)
or

1 +
2

|G|
=

1

n1
+

1

n2
+

1

n3

The left side is greater than one, so we have a natural constraint.

Lemma 14.6. The only integer solutions to the inequalities

2 ≤ n1 ≤ n2 ≤ n3

1

n1
+

1

n2
+

1

n3
> 1

are as listed together with the corresponding orders of G.

(a) (2, 2, n3) and |G| = 2n3.

(b) (2, 3, 3) and |G| = 12.

(c) (2, 3, 4) and |G| = 24.

(d) (2, 3, 5) and |G| = 60.

To complete the proof of theorem 14.2, we need the following

Lemma 14.7. A subgroup G ⊂ SO(3) corresponding to the triple (2, 2, n) is
isomorphic to Dn.
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